Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Pharm Sci ; 199: 106820, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821248

RESUMEN

Obesity is a global public health problem and is related with fatal diseases such as cancer and cardiovascular and metabolic diseases. Medical and lifestyle-related strategies to combat obesity have their limitations. White adipose tissue (WAT) browning is a promising strategy for increasing energy expenditure in individuals with obesity. Uncoupling protein 1 (UCP1) drives WAT browning. We previously screened natural products that enable induction of Ucp1 and demonstrated that these natural products induced WAT browning and increased energy expenditure in mice with diet-induced obesity. In this study, we aimed to extensively optimise the structure of compound 1, previously shown to promote WAT browning. Compound 3 s exhibited a significantly higher ability to induce Ucp1 in white and brown adipocytes than did compound 1. A daily injection of compound 3 s at 5 mg/kg prevented weight gain by 13.6 % in high-fat diet-fed mice without any toxicological observation. In addition, compound 3 s significantly improved glucose homeostasis, decreased serum triacylglycerol levels, and reduced total cholesterol and LDL cholesterol levels, without altering dietary intake or physical activity. Pharmaceutical properties such as solubility, lipophilicity, and membrane permeability as well as metabolic stability, half-life (T1/2), and blood exposure ratio of i.p to i.v were significantly improved in compound 3 s when compared with those in compound 1. Regarding the mode of action of WAT browning, the induction of Ucp1 and Prdm4 by compounds 1 and 3 s was dependent on Akt1 in mouse embryonic fibroblasts. Therefore, this study suggests the potential of compound 3 s as a therapeutic agent for individuals with obesity and related metabolic diseases, which acts through the induction of WAT browning as well as brown adipose tissue activation.

3.
Pharmacol Res Perspect ; 11(3): e01090, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37147903

RESUMEN

The global prevalence of GERD is substantially increasing each year, and GERD is a chronic disease that reduces the quality of life of patients. The efficacy of conventional drugs is diverse, and most require long-term or lifetime administration; thus, the development of more effective therapeutic agents is needed. Herein, a more effective treatment for GERD was tested. We investigated whether JP-1366 affected gastric H+/K+-ATPase activity and used the Na+/K+-ATPase assay to confirm the selectivity of H+/K+-ATPase inhibition. To clarify the mechanism of enzyme inhibition, JP-1366 and TAK-438 were analyzed by Lineweaver-Burk. Also, we investigated the effects of JP-1366 in various models involving reflux esophagitis. We found that JP-1366 mediates strong, selective, and dose-dependent inhibition of H+/K+-ATPase. We found that JP-1366 significantly suppressed gastric acid secretion in histamine-treated pylorus-ligated rats in a dose-dependent manner. Additionally, we confirmed that JP-1366 inhibited histamine-stimulated gastric acid secretion in the HPD model. JP-1366 exhibited a more than 2-fold higher inhibitory effect on esophageal injury than TAK-438 in GERD lesions and had a more potent inhibitory effect in indomethacin- or aspirin-induced gastric ulcer rat models than TAK-438. Additionally, JP-1366 inhibited gastric ulcers. These results support the possibility that JP-1366 is a good candidate drug for treating acid-related diseases.


Asunto(s)
Reflujo Gastroesofágico , Inhibidores de la Bomba de Protones , Ratas , Animales , Inhibidores de la Bomba de Protones/farmacología , Inhibidores de la Bomba de Protones/uso terapéutico , Histamina , Potasio/uso terapéutico , Calidad de Vida , Ácido Gástrico , Reflujo Gastroesofágico/tratamiento farmacológico , Adenosina Trifosfatasas
4.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37108692

RESUMEN

Lung cancer is one of the most common malignant tumors and a leading cause of cancer-related death in the worldwide. Various anticancer drugs, such as cisplatin and pemetrexed, have been developed for lung cancer treatment but due their drug resistance and side effects, novel treatments need to be developed. In this study, the efficacy of the natural drug JI017, which is known to have few side effects, was tested in lung cancer cells. JI017 inhibited A549, H460, and H1299 cell proliferation. JI017 induced apoptosis, regulated apoptotic molecules, and inhibited colony formation. Additionally, JI017 increased intracellular ROS generation. JI017 downregulated PI3K, AKT, and mTOR expression. JI017 increased the cytosolic accumulation of LC3. We found that JI017 promoted apoptosis through ROS-induced autophagy. Additionally, the xenograft tumor size was smaller in JI017-treated mice. We found that JI017 treatment increased MDA concentrations, decreased Ki-67 protein levels, and increased cleaved caspase-3 and LC3 levels in vivo. JI017 decreased cell proliferation and increased apoptosis by inducing autophagy signaling in H460 and H1299 lung cancer cells. Targeting JI017 and autophagy signaling could be useful in lung cancer treatment.


Asunto(s)
Neoplasias Pulmonares , Humanos , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Neoplasias Pulmonares/metabolismo , Apoptosis , Autofagia , Proliferación Celular , Proteínas Proto-Oncogénicas c-akt/metabolismo
5.
Drug Des Devel Ther ; 16: 4385-4397, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36583112

RESUMEN

The endoplasmic reticulum (ER) is responsible for structural transformation or folding of de novo proteins for transport to the Golgi. When the folding capacity of the ER is exceeded or excessive accumulation of misfolded proteins occurs, the ER enters a stressed condition (ER stress) and unfolded protein responses (UPR) are triggered in order to rescue cells from the stress. Recovery of ER proceeds toward either survival or cell apoptosis. ER stress is implicated in many pathologies, such as diabetes, cardiovascular diseases, inflammatory diseases, neurodegeneration, and lysosomal storage diseases. As a survival or adaptation mechanism, chaperone molecules are upregulated to manage ER stress. Chemical versions of chaperone have been developed in search of drug candidates for ER stress-related diseases. In this review, synthetic or semi-synthetic chemical chaperones are categorized according to potential therapeutic area and listed along with their chemical structure and activity. Although only a few chemical chaperones have been approved as pharmaceutical drugs, a dramatic increase in literatures over the recent decades indicates enormous amount of efforts paid by many researchers. The efforts warrant clearer understanding of ER stress and the related diseases and consequently will offer a promising drug discovery platform with chaperone activity.


Asunto(s)
Estrés del Retículo Endoplásmico , Respuesta de Proteína Desplegada , Chaperonas Moleculares/metabolismo , Retículo Endoplásmico/metabolismo , Apoptosis/fisiología
6.
Biomed Pharmacother ; 154: 113574, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36057224

RESUMEN

Atopic dermatitis (AD) is a highly prevalent inflammatory skin disease worldwide. Recent studies have suggested an important role for association with the gut and skin microbiome axis in AD development. Paeonia lactiflora Pallas extract (PL) is commonly used for the treatment of inflammatory diseases. However, the possible mechanisms by which PL can alleviate AD by regulating the gut microbiota have not been investigated. In this study, we aimed to investigate the therapeutic effects and underlying mechanism of PL in mice with antibiotic cocktail (ABX)-induced AD. The effects of PL were evaluated in bone marrow-derived macrophages (BMDMs) and ABX and dinitrochlorobenzene (DNCB) mouse models. PL suppressed inflammatory cytokine and NO production in LPS-treated BMDMs. Moreover, PL attenuated scoring atopic dermatitis (SCORAD) scores, epidermal thickness, white blood cell counts and the disease activity index (DAI) in ABX-induced AD mice. Meanwhile, PL decreased IL-17A production, induced Foxp3 expression and improved intestinal barrier integrity by especially increasing the expression of tight junction proteins such as ZO-1 and occludin. Additionally, PL partially increased the diversity of the gut microbiota and changed the microbial composition. Our findings suggest that PL may be a potential natural product that can ameliorate atopic dermatitis symptoms by suppressing inflammatory cytokine production, inducing Foxp3 expression, increasing intestinal barrier integrity and changing the gut microbiota composition.


Asunto(s)
Dermatitis Atópica , Microbioma Gastrointestinal , Paeonia , Animales , Antibacterianos/uso terapéutico , Antiinflamatorios/efectos adversos , Citocinas/metabolismo , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/metabolismo , Dinitroclorobenceno/toxicidad , Factores de Transcripción Forkhead/metabolismo , Inmunoglobulina E , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Piel
7.
Molecules ; 27(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35408505

RESUMEN

Lung cancer (LC) is the leading global cause of cancer-related death, and metastasis is a great challenge in LC therapy. Additionally, solid cancer, including lung, prostate, and colon cancer, are characterized by hypoxia. A low-oxygen state is facilitated by the oncogene pathway, which correlates with a poor cancer prognosis. Thus, we need to understand the related mechanisms in solid tumors to improve and develop new anticancer strategies. The experiments herein describe an anticancer mechanism in which heat shock protein 90 (HSP90) stabilizes HIF-1α, a master transcription factor of oxygen homeostasis that has been implicated in the survival, proliferation and malignant progression of cancers. We demonstrate the efficacy of 6-gingerol and the molecular mechanism by which 6-gingerol inhibits LC metastasis in different oxygen environments. Our results showed that cell proliferation was inhibited after 6-gingerol treatment. Additionally, HIF-1α, a transcriptional regulator, was found to be recruited to the hypoxia response element (HRE) of target genes to induce the transcription of a series of target genes, including MMP-9, vimentin and snail. Interestingly, we found that 6-gingerol treatment suppressed activation of the transcription factor HIF-1α by downregulating HSP90 under both normoxic and hypoxic conditions. Furthermore, an experiment in an in vivo xenograft model revealed decreased tumor growth after 6-gingerol treatment. Both in vitro and in vivo analyses showed the inhibition of metastasis through HIF-1α/HSP90 after 6-gingerol treatment. In summary, our study demonstrates that 6-gingerol suppresses proliferation and blocks the nuclear translocation of HIF-1α and activation of the EMT pathway. These data suggest that 6-gingerol is a candidate antimetastatic treatment for LC.


Asunto(s)
Catecoles , Muerte Celular , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neoplasias Pulmonares , Animales , Catecoles/farmacología , Hipoxia de la Célula , Línea Celular Tumoral , Alcoholes Grasos , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Oxígeno
8.
J Med Food ; 24(12): 1271-1279, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34847724

RESUMEN

Butea monosperma (Lam.) Taub. has been applied to treat inflammatory, metabolic, and infectious diseases. However, the antiobesity effects of B. monosperma (Lam.) Taub. flower (BMF) and the underlying mechanisms have not been determined. In this study, we analyzed the various extraction procedures, investigated the antiobesity effects, and identified the main chemical constituents of BMF. The BMF was subjected to acid hydrolysis in 5% H2SO4 in methanol at 50°C for 48 h and partitioned with ethyl acetate. The acid-hydrolyzed BMF ethyl acetate extracts (BMFE) strongly induced the expression of uncoupling protein 1 (Ucp1) and other thermogenic genes in C3H10T1/2 adipocytes. Daily oral administration of 70 mg/kg BMFE (BMFE70) to mice with diet-induced obesity resulted in less body weight gain, increased glucose tolerance, higher rectal temperature, and increased oxygen consumption. Qualitative and quantitative analyses along with treatments in Akt1 knockout mouse embryonic fibroblasts indicate that butein is a major active ingredient of BMFE, which stimulates Ucp1 gene expression. These data show the effects of butein-containing B. monosperma flower extract on thermogenesis and energy expenditure, further suggesting the potential role of BMFE as a functional ingredient in obesity and related metabolic diseases.


Asunto(s)
Butea , Chalconas/farmacología , Extractos Vegetales , Animales , Butea/química , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , Fibroblastos , Flores/química , Ratones , Ratones Obesos , Extractos Vegetales/farmacología , Aumento de Peso
9.
Artículo en Inglés | MEDLINE | ID: mdl-34422067

RESUMEN

Docetaxel-based therapy has been applied to kill cancers including lung and breast cancers but frequently causes peripheral neuropathy such as mechanical allodynia. Lack of effective drugs for chemotherapy-induced peripheral neuropathy (CIPN) treatment leads us to find novel drugs. Here, we investigated whether and how novel anticancer herbal prescription SH003 alleviates mechanical allodynia in mouse model of docetaxel-induced neuropathic pain. Docetaxel-induced mechanical allodynia was evaluated using von Frey filaments. Nerve damage and degeneration in paw skin of mice were investigated by immunofluorescence staining. Neuroinflammation markers in bloodstream, lumbar (L4-L6) spinal cord, and sciatic nerves were examined by ELISA or western blot analysis. Docetaxel (15.277 mg/kg) was intravenously injected into the tail vein of C57BL/6 mice, and mechanical allodynia was followed up. SH003 (557.569 mg/kg) was orally administered at least 60 min before the mechanical allodynia test, and von Frey test was performed twice. Docetaxel injection induced mechanical allodynia, and SH003 administration restored withdrawal threshold. Meanwhile, degeneration of intraepidermal nerve fibers (IENF) was observed in docetaxel-treated mice, but SH003 treatment suppressed it. Moreover, docetaxel injection increased levels of TNF-α and IL-6 in plasma and expressions of phospho-NF-κB and phospho-STAT3 in both of lumbar spinal cord and sciatic nerves, while SH003 treatment inhibited those changes. Taken together, it is worth noting that TNF-α and IL-6 in plasma and phospho-NF-κB and phospho-STAT3 in spinal cord and sciatic nerves are putative biomarkers of docetaxel-induced peripheral neuropathy (DIPN) in mouse models. In addition, we suggest that SH003 would be beneficial for alleviation of docetaxel-induced neuropathic pain.

10.
Front Pharmacol ; 12: 683575, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054558

RESUMEN

Prostate cancer is the second most commonly diagnosed cancer, and prostate cancer is the second most common cause of cancer death in United States men after lung cancer. Many therapies are used to treat prostate cancer, and chemotherapy is one of the most relevant treatments. However, chemotherapy has many side effects, and repeated administration of chemotherapeutic agents leads to acquired resistance. Thus, new drugs with few side effects are needed. We investigated the molecular mechanism of action of JI017 in human prostate cancer cells. We identified an endoplasmic reticulum (ER) stress pathway that depended on the reactive oxygen species (ROS) pathway and played a crucial role in JI017-induced apoptosis. We measured cell viability by the MTS assay to determine the effect of JI017. Analysis of apoptosis, mitochondrial dysfunction, and cell cycle features was performed by flow cytometry. We used western blot and RT-PCR to measure the levels of the proteins of the unfolded protein response (UPR) pathway and apoptosis markers. Immunoprecipitation assay and transfection were used to determine the expression levels of proteins interacting with the pathways influenced by JI017 in prostate cancer cells. The anticancer effects induced by JI017 were evaluated. JI017 induced cell death that regulated apoptotic molecules and caused cell cycle arrest that inhibited the proliferation of cancer cells. Moreover, JI017 generated ROS. Accumulation of ROS caused ER stress through the PERK-eIF2α-CHOP and IRE1α-CHOP pathways. Furthermore, persistent activation of the UPR pathway induced by JI017 treatment triggered mitochondrial dysfunction, including dissipation of mitochondrial membrane potential, which activated intrinsic apoptotic pathway in human prostate cancer cells. The data indicated that N-acetyl-L-cysteine diminished apoptosis. We demonstrated that JI017 induced ER stress and cell death. Anticancer properties of JI017 in prostate cancer cells and in a human prostate cancer model involved ROS-mediated ER stress. Thus, JI017 treatment provides a new strategy for chemotherapy of prostate cancer.

11.
Nutrients ; 13(4)2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33919521

RESUMEN

The intestinal microbiome is considered one of the key regulators of health. Accordingly, the severity of atopic dermatitis (AD) is mediated by the skin and intestinal microbiome environment. In this study, while evaluating the aggravation in AD symptoms by the antibiotics cocktail (ABX)-induced depletion of the intestinal microbiome, we sought to verify the effect of Gardenia jasminoides (GJ), a medicinal herb used for inflammatory diseases, on AD regarding its role on the intestinal microbiome. To verify the aggravation in AD symptoms induced by the depletion of the intestinal microbiome, we established a novel mouse model by administrating an ABX to create a microbiome-free environment in the intestine, and then applied 2,4-dinitrochlorobenzene (DNCB) to induce an AD-like skin inflammatory response. While ABX treatment aggravated AD-like symptoms, the 2-week administration of GJ improved these pathological changes. DNCB application upregulated immune cell count and serum cytokine expression, which were alleviated by GJ. Moreover, pathological alterations by antibiotics and DNCB, including histological damage of the intestine and the intestinal expression of IL-17, were recovered in GJ-treated mice. The beneficial effect of GJ was due to the restoration of the intestinal microbiome composition. Overall, we suggest GJ as a potential therapeutic agent for AD due to its regulation of the intestinal microbiome.


Asunto(s)
Dermatitis Atópica/tratamiento farmacológico , Gardenia , Microbioma Gastrointestinal/efectos de los fármacos , Extractos Vegetales/farmacología , Piel/microbiología , Animales , Antibacterianos/efectos adversos , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/microbiología , Dinitroclorobenceno , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos BALB C
12.
Artículo en Inglés | MEDLINE | ID: mdl-33029168

RESUMEN

Pancreatic cancer has a poor prognosis with a five-year survival rate of less than 10%. Moreover, chemotherapy is mostly rendered ineffective owing to chemotherapy resistance and cytotoxicity. Therefore, the development of effective therapeutic strategies and novel drugs against pancreatic cancer is an urgent need. Cucurbitacin D (CuD), a plant steroid derived from Trichosanthes kirilowii, is an anticancer agent effective against various cancer cell lines. However, the anticancer activity and molecular mechanism of CuD in pancreatic cancer remain unknown. Therefore, we aimed to investigate the anticancer activity and molecular mechanism of CuD in the human pancreatic cancer cell line, Capan-1. CuD induced cell cycle arrest at the G2/M phase, apoptosis, and reactive oxygen species generation in Capan-1 cell line. In addition, CuD induced the activation of the p38 MAPK signaling pathway that regulates apoptosis, which was also inhibited by N-acetyl-L-cysteine and the p38 inhibitor SB203580. These data suggest that CuD induces cell cycle arrest and apoptosis via the ROS/p38 pathway in Capan-1 pancreatic cancer cell line; hence, CuD is a promising candidate that should be explored further for its effectiveness as an anticancer agent against pancreatic cancer.

13.
Eur J Med Chem ; 197: 112280, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32361286

RESUMEN

Herein, we demonstrate that butein (1) can prevent swelling in a murine lymphedema model by suppressing tumor necrosis factor α (TNF-α) production. Butein derivatives were synthesized and evaluated to identify compounds with in vitro anti-inflammatory activity. Among them, 20 µM of compounds 7j, 7m, and 14a showed 50% suppression of TNF-α production in mouse peritoneal macrophages after lipopolysaccharide stimulation. Compound 14a, exhibited the strongest potency with an in vitro IC50 of 14.6 µM and suppressed limb volume by 70% in a murine lymphedema model. The prodrug strategy enabled a six-fold increase in kinetic solubility of compound 1 and five-fold higher levels of active metabolite in the blood for compound 14a via oral administration in the pharmacokinetics study. We suggest that the compound 14a could be developed as a potential therapeutic agent targeting anti-inflammatory activity to alleviate lymphedema progression.


Asunto(s)
Antiinflamatorios/uso terapéutico , Chalconas/uso terapéutico , Linfedema/tratamiento farmacológico , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/farmacocinética , Chalconas/síntesis química , Chalconas/farmacocinética , Humanos , Lipopolisacáridos/farmacología , Linfedema/patología , Macrófagos Peritoneales/efectos de los fármacos , Ratones , Microsomas Hepáticos/metabolismo , Profármacos/síntesis química , Profármacos/farmacocinética , Profármacos/uso terapéutico , Ratas , Factor de Necrosis Tumoral alfa/metabolismo
14.
Front Oncol ; 10: 62, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32133284

RESUMEN

In this study, the mechanism of the anticancer effect through which cucurbitacin D (CuD) can overcome gefitinib resistance in NSCLC was investigated. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assay, and cell migration and growth were observed by wound healing and colony formation assays, respectively. Levels of EGFR family members, protein kinase B, extracellular signal-regulated kinase, poly(ADP-ribose) polymerase, and G2/M phase-related proteins were detected by Western blot analysis. Immunofluorescence analysis was used to detect the intracellular expression of p-EGFR. Induction of apoptosis and cell cycle arrest was measured by flow cytometry. Solid-phase binding assays were used to determine binding to the EGFR family. CuD inhibits the phosphorylation of EGFR in gefitinib-resistant NSCLC cells and induces cell death via cell cycle arrest and apoptosis. CuD treatment or EGFR knockdown also suppressed the growth of gefitinib-resistant NSCLC cells. In addition, CuD overcame resistance by blocking EGF binding to EGFR in gefitinib-resistant NSCLC cells. In conclusion, we demonstrate that CuD overcomes gefitinib resistance by reducing the activation of EGFR-mediated survival in NSCLC and by inhibiting the combination of EGF and EGFR.

15.
Nutrients ; 12(1)2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31936835

RESUMEN

Gliomas are the most observed primary brain tumor, of which glioblastoma multiform (GBM) shows the highest incidence. Radiotherapy with temozolomide is the standard therapeutic method, but because of side effects, search for alternative therapies is required. Gardenia jasminoides (GJ) is flavonoid abundant with beneficial effects on inflammation, metabolic diseases, and cancers. In this study, we investigated the synergistic combination of GJ and cisplatin (CDDP) in U87MG and U373MG GBM cells. GJ and CDDP both showed cytotoxicity in U87MG cells, however GJ did not affect viability of normal astrocytes while CDDP displayed high toxicity. Cytotoxic effect of GJ and CDDP was related in apoptosis when confirmed by Western blot assays on cleaved caspase-3, caspase-9, and PARP. Moreover, GJ and CDDP showed synergistic combination in cell death of GBM cells, which was further confirmed by Western blot assays of apoptosis factors and also flow cytometry of Annexin V. Analysis on autophagy factors showed that GJ/CDDP combination induced autophagy, and through inhibition of autophagy, we could confirm autophagy is crucial to cytotoxicity of GJ/CDDP in GBM cell lines. The autophagy-mediated apoptosis of GJ/CDDP was dependent on the AKT/mTOR pathway. Overall, our results suggest GJ/CDDP combination as an effective yet safe therapeutic approach to GBMs.


Asunto(s)
Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Gardenia/química , Glioblastoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Astrocitos/efectos de los fármacos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
16.
J Org Chem ; 85(4): 2520-2531, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31904238

RESUMEN

Ruthenium(II)-catalyzed C(sp2)-H functionalization of N-aryl phthalazinones with a range of aldehydes and activated ketone is described. Initial formation of hydroxyalkylated phthalazinones and subsequent Mitsunobu cyclization provided facile access to biologically relevant indazolophthalazinones. The utility of this method is highlighted by synthetic transformations into a series of potentially bioactive scaffolds.

17.
Phytomedicine ; 66: 153109, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31790894

RESUMEN

BACKGROUND: Lung cancer is one of the most common malignancies worldwide. To treat lung cancer, various anticancer drugs were developed and tested, but they failed because of drug resistance. In the present study, we tested herbal medicines, such as TK and CuD, as anticancer drugs to decrease side effects and resistance. METHODS: Cell viability was measured by an MTT assay. Analysis of cell cycle arrest was performed by flow cytometry. Induction of apoptosis by cucurbitacin D was measured by an annexin V-FITC/PI assay. We performed RTK kit analysis. Levels of p-ErbB3, p-STAT3, p-NF-κB, and caspases were measured by western blot analysis. Nuclear staining of ErbB3 was measured by immunocytochemistry. Transcriptional activity of STAT3 and NF-κB was detected by STAT3 and NF-κB luciferase reporter gene assays. RESULTS: We found a synergistic effect of TK with CDDP and PXD in primary culture of human NSCLC tumor cells. The combination of CDDP/PXD and TK or CuD inhibited the proliferation of H1299 cells. The combination of CDDP/PXD and TK or CuD induced sub-G1 and G2/M cell cycle arrest in H1299 cells. The combination of CDDP/PXD and TK or CuD induced apoptosis, regulated apoptotic molecules, caused morphological changes and inhibited colony formation in H1299 cells. We found that TK suppresses p-ErbB3 expression and signaling. The combination of CDDP/PXD and TK or CuD inhibited p-AKT, p-Erk, and p-JNK signaling and suppressed Stat3 and NF-κB transcriptional activity in H1299 cells. More importantly, the combination of CDDP/PXD and TK or CuD inhibited p-ErbB3 and downstream molecules in H1299 cells. The combination of CDDP/PXD and TK or CuD inhibited ErbB2/ErbB3 dimerization. Our results clearly demonstrate that the synergistic effect of CDDP/PXD and TK or CuD inhibits cell growth and induces apoptosis by inhibiting ErbB3 signaling. CONCLUSION: The combination of CDDP/PXD and TK or CuD decreases cell proliferation and induces apoptosis by inhibiting ErbB3 signaling in H1299 lung cancer cells. TK or CuD could be useful as a compound to treat lung cancer. Additionally, targeting ErbB3 may also be useful for treating lung cancer.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Cisplatino/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Pemetrexed/farmacología , Trichosanthes/química , Caspasas/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Medicamentos Herbarios Chinos , Humanos , Receptor ErbB-3/metabolismo , Transducción de Señal/efectos de los fármacos , Triterpenos/administración & dosificación
18.
Front Pharmacol ; 10: 1097, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31607928

RESUMEN

Atopic dermatitis (AD) is a frequent skin complication that is caused by unknown reasons. KHU-ATO-JIN-D (KAJD) is a new drug aimed at AD composed of a mixture of extracts from six plants known to have anti-inflammatory and antiallergic effects. This study investigated whether KAJD alleviates 2,4-dinitrochlorobenzene (DNCB)-induced AD in BALB/c mice and several immune cell types. We applied KAJD to DNCB-induced AD-like skin lesions in BALB/c mice, phorbol myristate acetate/ionomycin-stimulated human mast cells (HMC-1), and lipopolysaccharide (LPS)-stimulated macrophages and splenocytes. Histological, ELISA, PCR, and Western blot experiments were performed. The application of KAJD significantly attenuated the lesion severity and skin thickness and inhibited the infiltration of inflammatory cells, mast cells, and CD4+ T cells into the sensitized skin of mice. Reduced leukocyte numbers and proinflammatory cytokine and IgE levels were also observed in the sera of KAJD-treated mice. Moreover, in vitro studies demonstrated that KAJD treatment reduced the LPS-induced expression of proinflammatory cytokines and nitric oxide (NO) production in RAW 264.7 cells. The regulation of IL-4 and IL-6 mRNA and MAPK pathways was also detected in agonist-induced isolated splenocytes and HMC-1 cells by the addition of KAJD. Taken together, our results demonstrate that KAJD inhibits the development of DNCB-induced AD in BALB/c mice and in several immune cell types, suggesting that KAJD might be a useful therapeutic drug for the treatment of AD.

19.
J Med Chem ; 62(13): 6063-6082, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31257875

RESUMEN

(E)-3,4-Dihydroxybenzylideneacetone (compound 1) inhibited receptor activator of NF-κB ligand-induced osteoclastogenesis of C57BL/6 bone marrow monocyte/macrophages with IC50 of 7.8 µM (IC50 of alendronate, 3.7 µM) while stimulating the differentiation of MC3T3-E1 osteoblastic cells, accompanied by the induction of Runt-related transcription factor 2, alkaline phosphatase, and osteocalcin. (E)-4-(3-Hydroxy-4-methoxyphenyl)-3-buten-2-one (compound 2c) showed a dramatically increased osteoclast-inhibitory potency with IC50 of 0.11 µM while sustaining osteoblast-stimulatory activity. (E)-4-(4-Hydroxy-3-methoxyphenyl)-3-buten-2-one (compound 2g) stimulated alkaline phosphatase production 2-fold at 50 µM without changing osteoclast-inhibitory activity, compared with compound 1. Oral administration of compounds 1, 2c, and 2g prevented ovariectomy-induced osteoporosis in ddY mice to a degree proportional to their osteoclastogenesis-inhibitory potencies. The administration of 1 (mg/kg)/d compound 2c ameliorated histomorphometry of osteoporotic bone to a degree comparable with 10 (mg/kg)/d alendronate. Conclusively, the in vitro capacity of a few benzylideneacetone derivatives to inhibit osteoclastogenesis supported by independent osteoblastogenesis activation was convincingly reflected in in vivo management of osteoporosis, suggesting a potential novel therapeutics for osteopenic diseases.


Asunto(s)
Compuestos de Bencilideno/uso terapéutico , Butanonas/uso terapéutico , Osteogénesis/efectos de los fármacos , Fosfatasa Alcalina/metabolismo , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Compuestos de Bencilideno/síntesis química , Compuestos de Bencilideno/farmacocinética , Butanonas/síntesis química , Butanonas/farmacocinética , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Femenino , Fémur/patología , Humanos , Ratones , Estructura Molecular , Subunidad p50 de NF-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteoclastos/metabolismo , Osteoporosis/tratamiento farmacológico , Células RAW 264.7 , Relación Estructura-Actividad , Tibia/patología
20.
Am J Chin Med ; 47(3): 691-705, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30974965

RESUMEN

Scutellaria Radix (SR) is an herb traditionally used in Asian countries to treat inflammatory diseases. Recent studies report that SR exhibits anticancer activities in various types of tumors. In this study, we investigated the apoptotic and autophagic effect of SR in non-small cell lung cancer (NSCLC), the leading cause of cancer-associated death. Treatment of SR in two NSCLC cell lines, H358 and H2087 cells resulted in suppressed cell viability. Western blot assays showed increased expressions of Bcl-2-associated X protein (Bax), cleaved-caspase 3 and cleaved-Poly ADP ribose polymerase (PARP), key factors of apoptosis. Co-treatment of SR with a caspase inhibitor Z-VAD led to nullification of the antiproliferative effect, suggesting the role of apoptosis in the action mechanism of SR. Further experiments revealed autophagy was involved in the effect of SR. SR-treated NSCLC cells expressed increased ratio of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II/LC3-I. When chloroquine was co-treated with SR, this ratio was further increased, indicating SR treatment induced autophagy in NSCLC cells. Interestingly, loss of autophagy by 3-Methyladenine (3-MA) co-treatment suppressed SR-induced apoptosis. We then evaluated the relevance of AMP-activated protein kinase (AMPK) in the autophagic/apoptotic process in NSCLC by SR treatment. Immunoblot assays showed increased phosphorylation of AMPK α and P70-S6 kinase in SR-treated H358 and H2087 cells. Under AMPK-inhibited conditions by compound C, SR treatment failed to induce both autophagy and apoptosis. Taken together, this study identifies the positive effect of SR in H358 and H2087 cells by inducing apoptosis via AMPK-dependent autophagy. Thus, our results suggest the potential use of SR as a novel therapeutic strategy for NSCLC patients.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Extractos Vegetales/farmacología , Scutellaria baicalensis/química , Humanos , Estimulación Química , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...