Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 11(4): e0108023, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37284772

RESUMEN

Outer membrane protein A (OmpA) is the most abundant porin in bacterial outer membranes. KJΔOmpA299-356, an ompA C-terminal in-frame deletion mutant of Stenotrophomonas maltophilia KJ, exhibits pleiotropic defects, including decreased tolerance to menadione (MD)-mediated oxidative stress. Here, we elucidated the underlying mechanism of the decreased MD tolerance mediated by ΔompA299-356. The transcriptomes of wild-type S. maltophilia and the KJΔOmpA299-356 mutant strain were compared, focusing on 27 genes known to be associated with oxidative stress alleviation; however, no significant differences were identified. OmpO was the most downregulated gene in KJΔOmpA299-356. KJΔOmpA299-356 complementation with the chromosomally integrated ompO gene restored MD tolerance to the wild-type level, indicating the role of OmpO in MD tolerance. To further clarify the possible regulatory circuit involved in ompA defects and ompO downregulation, σ factor expression levels were examined based on the transcriptome results. The expression levels of three σ factors were significantly different (downregulated levels of rpoN and upregulated levels of rpoP and rpoE) in KJΔOmpA299-356. Next, the involvement of the three σ factors in the ΔompA299-356-mediated decrease in MD tolerance was evaluated using mutant strains and complementation assays. rpoN downregulation and rpoE upregulation contributed to the ΔompA299-356-mediated decrease in MD tolerance. OmpA C-terminal domain loss induced an envelope stress response. Activated σE decreased rpoN and ompO expression levels, in turn decreasing swimming motility and oxidative stress tolerance. Finally, we revealed both the ΔompA299-356-rpoE-ompO regulatory circuit and rpoE-rpoN cross regulation. IMPORTANCE The cell envelope is a morphological hallmark of Gram-negative bacteria. It consists of an inner membrane, a peptidoglycan layer, and an outer membrane. OmpA, an outer membrane protein, is characterized by an N-terminal ß-barrel domain that is embedded in the outer membrane and a C-terminal globular domain that is suspended in the periplasmic space and connected to the peptidoglycan layer. OmpA is crucial for the maintenance of envelope integrity. Stress resulting from the destruction of envelope integrity is sensed by extracytoplasmic function (ECF) σ factors, which induce responses to various stressors. In this study, we revealed that loss of the OmpA-peptidoglycan (PG) interaction causes peptidoglycan and envelope stress while simultaneously upregulating σP and σE expression levels. The outcomes of σP and σE activation are different and are linked to ß-lactam and oxidative stress tolerance, respectively. These findings establish that outer membrane proteins (OMPs) play a critical role in envelope integrity and stress tolerance.


Asunto(s)
Stenotrophomonas maltophilia , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/metabolismo , Regulón , Peptidoglicano/metabolismo , Factor sigma/metabolismo , Estrés Oxidativo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
J Antimicrob Chemother ; 78(8): 1891-1899, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37283194

RESUMEN

BACKGROUND: Stenotrophomonas maltophilia is ubiquitous in the environment and is an important MDR opportunistic pathogen. Oxidative stress is an inevitable challenge to an aerobic bacterium. Accordingly, S. maltophilia has many capabilities to face variable oxidative stress. Some of the oxidative stress alleviation systems cross-protect bacteria from antibiotics. In our recent RNA-sequencing transcriptome analysis, we documented the increased expression of a three-gene cluster, yceA-cybB-yceB, in the presence of hydrogen peroxide (H2O2). The YceI-like, cytochrome b561 and YceI-like proteins encoded by yceA, cybB and yceB are located in the cytoplasm, inner membrane and periplasm, respectively. OBJECTIVES: To characterize the role of the yceA-cybB-yceB operon of S. maltophilia in oxidative stress tolerance, swimming motility and antibiotic susceptibility. METHODS: The presence of the yceA-cybB-yceB operon was verified by RT-PCR. The functions of this operon were revealed by in-frame deletion mutant construction and complementation assay. Expression of the yceA-cybB-yceB operon was assessed by quantitative RT-PCR. RESULTS: The yceA, cybB and yceB genes form an operon. Loss of function of the yceA-cybB-yceB operon compromised menadione tolerance, enhanced swimming motility and increased susceptibility to fluoroquinolone and ß-lactam antibiotics. The expression of the yceA-cybB-yceB operon was up-regulated by oxidative stress, such as H2O2 and superoxide, and not impacted by antibiotics, such as fluoroquinolone and ß-lactams. CONCLUSIONS: The evidence strongly supports the view that the physiological function of the yceA-cybB-yceB operon is to alleviate oxidative stress. The operon provides an additional example that oxidative stress alleviation systems can cross-protect S. maltophilia from antibiotics.


Asunto(s)
Stenotrophomonas maltophilia , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Natación , Peróxido de Hidrógeno/farmacología , Antibacterianos/farmacología , Antibacterianos/metabolismo , Estrés Oxidativo , Fluoroquinolonas/metabolismo , Operón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...