Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 618(7966): 842-848, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258671

RESUMEN

Nonsense mutations are the underlying cause of approximately 11% of all inherited genetic diseases1. Nonsense mutations convert a sense codon that is decoded by tRNA into a premature termination codon (PTC), resulting in an abrupt termination of translation. One strategy to suppress nonsense mutations is to use natural tRNAs with altered anticodons to base-pair to the newly emerged PTC and promote translation2-7. However, tRNA-based gene therapy has not yielded an optimal combination of clinical efficacy and safety and there is presently no treatment for individuals with nonsense mutations. Here we introduce a strategy based on altering native tRNAs into  efficient suppressor tRNAs (sup-tRNAs) by individually fine-tuning their sequence to the physico-chemical properties of the amino acid that they carry. Intravenous and intratracheal lipid nanoparticle (LNP) administration of sup-tRNA in mice restored the production of functional proteins with nonsense mutations. LNP-sup-tRNA formulations caused no discernible readthrough at endogenous native stop codons, as determined by ribosome profiling. At clinically important PTCs in the cystic fibrosis transmembrane conductance regulator gene (CFTR), the sup-tRNAs re-established expression and function in cell systems and patient-derived nasal epithelia and restored airway volume homeostasis. These results provide a framework for the development of tRNA-based therapies with a high molecular safety profile and high efficacy in targeted PTC suppression.


Asunto(s)
Codón sin Sentido , Regulador de Conductancia de Transmembrana de Fibrosis Quística , ARN de Transferencia , Animales , Ratones , Aminoácidos/genética , Codón sin Sentido/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , ARN de Transferencia/administración & dosificación , ARN de Transferencia/genética , ARN de Transferencia/uso terapéutico , Emparejamiento Base , Anticodón/genética , Biosíntesis de Proteínas , Mucosa Nasal/metabolismo , Perfilado de Ribosomas
2.
Mol Genet Metab Rep ; 32: 100882, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35600090

RESUMEN

Phenylketonuria (PKU) is a genetic disorder affecting around 1 in 12,000 live births (1), caused by a mutation in the phenylalanine hydroxylase (PAH) gene in the liver which facilitates the catabolism of phenylalanine (Phe). Without a functional copy of PAH, levels of Phe in the blood and tissues rise, resulting in potentially life-threatening damage to the central nervous system. (2) Treatment options for PKU are limited, and center around adherence to a strict PKU diet that suffers from poor patient compliance. There are two approved drugs available, one of which must be used in conjunction with the PKU diet and another that has serious immunological side effects. Here we demonstrate that the LUNAR® delivery technology is capable of delivering mRNA for a replacement enzyme, the bacterial phenylalanine ammonia lyase (avPAL), into the hepatic tissue of a PKU mouse, and that the enzyme is capable of metabolizing Phe and reducing serum levels of Phe for more than five days post-transfection. We further demonstrate the ability of LUNAR to deliver a plant-derived PAL protein with a similar impact on the level of serum Phe. Taken together these results demonstrate both the capability of LUNAR for the targeted delivery of PAL mRNA into hepatic tissue in vivo, replacing the defective PAH protein and successfully reducing serum Phe levels, thereby addressing the underlying cause of PKU symptoms. Secondly, that plant-based PAL proteins are a viable alternative to bacterial avPAL to reduce the immunogenic response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...