Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 62(51): 21371-21378, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38047563

RESUMEN

Revamping the structure of energy storage is an efficient strategy for striking a balance between the performance and sensitivity of energetic materials to achieve high energy and reduced sensitivity. In continuation of prior research, this study utilized the ligand 3,5-dimethyl-1H-pyrazole-4-carbonhydrazide (DMPZCA) and innovatively designed and synthesized the compound ECCs [Cu(HDMPZCA)2(ClO4)2](ClO4)2·2H2O (ECCs-1·2H2O). Compared with the former research, solvent-free compound ECCs-1 refers to an innovative material characterized by a dual structure involving ionic salts and coordination compounds. Due to these unique structures, ECCs-1 exhibits an increased [ClO4-] content, a higher oxygen balance constant (OB = -7.9%), and improved mechanical sensitivity (IS = 8 J, FS = 32 N). Theoretical calculations support the superior detonation performance of ECCs-1. Additionally, experimental results confirm its ignition capability through lower-threshold lasers and highlight the outstanding initiation potential and explosive power, making it a suitable candidate for primary explosives.

2.
Dalton Trans ; 52(38): 13716-13723, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37706537

RESUMEN

For energetic compounds, their structure determines their performance, and even minor variations in their structure can have a significant impact on their performance. The application scenarios for energetic materials are diverse, and their performance requirements vary as well. To investigate the influence of different substituent positions on the performance of primary explosives, we prepared two Ag(I)-based complexes, [Ag(2-IZCA)ClO4]n (ECPs-1) and [Ag(4-IZCA)ClO4]n (ECPs-2), using structurally isomeric ligands, 1H-imidazole-2-carbohydrazide (2-IZCA) and 1H-imidazole-4-carbohydrazide (4-IZCA). The structures were confirmed using infrared, elemental analysis, and single-crystal X-ray diffraction. Experimental results demonstrate that both ECPs exhibit good thermal stability. However, compared to ECPs-1, ECPs-2 exhibits a lower thermal initial decomposition temperature (Td = 210 °C), lower mechanical sensitivity (IS = 27 J, FS = 84 N), and more concentrated energy output. Although theoretical predictions suggest similar detonation velocities and pressures for both compounds, actual detonation performance tests indicate that ECPs-2 has stronger explosive power and initiating capability, with potential for use as a laser initiator (E = 126 mJ). The simple preparation method and inexpensive starting materials enrich the research on primary explosives.

3.
Inorg Chem ; 62(24): 9695-9701, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37289637

RESUMEN

In order to further explore the effect of ligands on the performance of primary explosives and gain a deeper understanding of the coordination mechanism, we designed furan-2-carbohydrazide (FRCA), a ligand, by using oxygen-containing heterocycles and carbohydrazide. Then, FRCA and Cu(ClO4)2 were used to synthesize coordination compounds [Cu(FRCA)2(H2O)(ClO4)2]·CH3OH (ECCs-1·CH3OH) and Cu(FRCA)2(H2O)(ClO4)2 (ECCs-1). The structure of the ECCs-1 was confirmed by single-crystal X-ray diffraction, IR and EA characterization. Further experiments on ECCs-1 show that ECCs-1 has good thermal stability, but is sensitive to mechanical stimuli (impact sensitivity = IS = 8 J, friction sensitivity = FS = 20 N). The predicted value of the detonation parameter is DEXPLO 5 = 6.6 km s-1, PEXPLO 5 = 18.8 GPa, but the ignition test, laser test, and lead plate detonation experiment show that ECCs-1 has excellent detonation performance, which is very worthy of attention.

4.
Langmuir ; 39(26): 9239-9245, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37356112

RESUMEN

In order to preserve the coordinating ability of the hydrazide group, we used retrosynthetic analysis to design and synthesize ligand furan-2,5-dicarbohydrazide and its complex [Cu(FDCA)(H2O)ClO4]n(ClO4)n·nH2O (ECPs-1·H2O). The structure of the product was confirmed by single-crystal X-ray diffraction, infrared spectroscopy, and elemental analysis. The solvent-free target material ECPs-1 exhibited good thermal stability, sensitivity to mechanical stimuli, and excellent explosive properties. Furthermore, it had good potential for laser ignition and comparable detonation power to LA. The simple preparation method and inexpensive starting materials enriched the research on primary explosives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...