Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39159613

RESUMEN

INTRODUCTION: Skin blanching assay has been established as a surrogate method for assessing bioequivalence of topical corticosteroids. This study aimed to apply the skin blanching assay to evaluate the bioequivalence of a test desonide cream (T) compared with the reference Desonide® (R) using Chinese skins. Additionally, the pharmacokinetics and safety profiles were also assessed. METHODS: By detecting the degree of skin blanching under different dose duration in a pilot dose-duration-response study, the area under the observed effect-time curve (AUEC) and half of the maximum effect (ED50) was calculated. Based on this, the skin color of different time points after a dose duration of ED50, D1 (0.5×ED50) and D2 (2×ED50) were detected as a pharmacodynamic indicator to compare between test and reference creams. A single-center, single-dose, randomized, open-label, two-cycle crossover pharmacokinetic studies were designed to make sure the exposure of tested formulations was not higher than that of the reference formulations. Subjects experiencing adverse events (AEs) were monitored and utilized for safety analysis. RESULTS: These studies involved twelve subjects for the dose-duration-response study, 100 subjects for the bioequivalence study, and twelve subjects for pharmacokinetic study. The results showed that the population ED50 was 0.88±0.45 h, the mean ratio of area under effective curve (AUEC0-24h) of test and reference preparations was 0.95, with a 90% confidence interval as 88.09%-101.72%, indicating the bioequivalence of the test formulation and Desonide®. The maximum concentration (Cmax) and exposure (AUC0-t) of T and R were 20.8 ± 11.5 pg/mL versus 19.7 ± 10.1 pg/mL, respectively, and 451.04 ± 363.65 pg∙h/mL versus 541.47 ± 581.41 pg∙h/mL, respectively. The systemic exposure of a single dose of the test cream was not higher than that of the reference preparation. All of the volunteers experienced grade 1 adverse events (AEs), suggesting that single administration of the test desonide cream is well tolerated in the Chinese healthy population. CONCLUSIONS: This study demonstrated the applicability of skin blanching assay in Chinese skins and established the bioequivalence of test and reference desonide creams.

2.
J Am Chem Soc ; 146(32): 22266-22275, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38996381

RESUMEN

Single-atom catalysts (SACs) with unitary active sites hold great promise for realizing high selectivity toward a single product in the CO2 electroreduction reaction (CO2RR). However, achieving high Faradaic efficiency (FE) of multielectron products like methane on SACs is still challenging. Herein, we report a pressure-regulating strategy that achieves 83.5 ± 4% FE for the CO2-to-CH4 conversion on the asymmetric Cu-N2 sites, representing one of the best CO2-to-CH4 performances. Elevated CO2 pressure was demonstrated as an efficient way to inhibit the hydrogen evolution reaction via promoting the competing adsorption of reactant CO2, regardless of the nature of the active sites. Meanwhile, the asymmetric Cu-N2 structure could endow the Cu sites with stronger electronic coupling with *CO, thus suppressing the desorption of *CO and facilitating the following hydrogenation of *CO to *CHO. This work provides a synergetic strategy of the pressure-induced reaction environment regulating and the electronic structure modulating for selective CO2RR toward targeted products.

3.
Nat Commun ; 15(1): 4712, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830888

RESUMEN

Low-energy consumption seawater electrolysis at high current density is an effective way for hydrogen production, however the continuous feeding of seawater may result in the accumulation of Cl-, leading to severe anode poisoning and corrosion, thereby compromising the activity and stability. Herein, CoFeAl layered double hydroxide anodes with excellent oxygen evolution reaction activity are synthesized and delivered stable catalytic performance for 350 hours at 2 A cm-2 in the presence of 6-fold concentrated seawater. Comprehensive analysis reveals that the Al3+ ions in electrode are etched off by OH- during oxygen evolution reaction process, resulting in M3+ vacancies that boost oxygen evolution reaction activity. Additionally, the self-originated Al(OH)n- is found to adsorb on the anode surface to improve stability. An electrode assembly based on a micropore membrane and CoFeAl layered double hydroxide electrodes operates continuously for 500 hours at 1 A cm-2, demonstrating their feasibility in brine electrolysis.

4.
Angew Chem Int Ed Engl ; 63(32): e202406082, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38807303

RESUMEN

Commercial alkaline water electrolysers typically operate at 80 °C to minimize energy consumption. However, NiFe-based catalysts, considered as one of the most promising candidates for anode, encounter the bottleneck of high solubility at such temperatures. Herein, we discover that the dissolution of NiFe layered double hydroxides (NiFe-LDH) during operation not only leads to degradation of anode itself, but also deactivates cathode for water splitting, resulting in decay of overall electrocatalytic performance. Aiming to suppress the dissolution, we employed oxyanions as inhibitors in electrolyte. The added phosphates to the electrolyte inhibit the loss of NiFe-LDH active sites at 400 mA cm-2 to 1/3 of the original amount, thus reducing the rate of performance decay by 25-fold. Furthermore, the usage of borates, sulfates, and carbonates yields similar results, demonstrating the reliability and universality of the active site dissolution inhibitor, and its role in elevated water electrolysis.

6.
Nat Commun ; 15(1): 1973, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438342

RESUMEN

Seawater electrolysis offers a renewable, scalable, and economic means for green hydrogen production. However, anode corrosion by Cl- pose great challenges for its commercialization. Herein, different from conventional catalysts designed to repel Cl- adsorption, we develop an atomic Ir catalyst on cobalt iron layered double hydroxide (Ir/CoFe-LDH) to tailor Cl- adsorption and modulate the electronic structure of the Ir active center, thereby establishing a unique Ir-OH/Cl coordination for alkaline seawater electrolysis. Operando characterizations and theoretical calculations unveil the pivotal role of this coordination state to lower OER activation energy by a factor of 1.93. The Ir/CoFe-LDH exhibits a remarkable oxygen evolution reaction activity (202 mV overpotential and TOF = 7.46 O2 s-1) in 6 M NaOH+2.8 M NaCl, superior over Cl--free 6 M NaOH electrolyte (236 mV overpotential and TOF = 1.05 O2 s-1), with 100% catalytic selectivity and stability at high current densities (400-800 mA cm-2) for more than 1,000 h.

7.
Comput Methods Programs Biomed ; 248: 108137, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38520784

RESUMEN

BACKGROUND AND OBJECTIVE: Clinical pharmacological modeling and statistical analysis software is an essential basic tool for drug development and personalized drug therapy. The learning curve of current basic tools is steep and unfriendly to beginners. The curve is even more challenging in cases of significant individual differences or measurement errors in data, resulting in difficulties in accurately estimating pharmacokinetic parameters by existing fitting algorithms. Hence, this study aims to explore a new optimized parameter fitting algorithm that reduces the sensitivity of the model to initial values and integrate it into the CPhaMAS platform, a user-friendly online application for pharmacokinetic data analysis. METHODS: In this study, we proposed an optimized Nelder-Mead method that reinitializes simplex vertices when trapped in local solutions and integrated it into the CPhaMAS platform. The CPhaMAS, an online platform for pharmacokinetic data analysis, includes three modules: compartment model analysis, non-compartment analysis (NCA) and bioequivalence/bioavailability (BE/BA) analysis. Our proposed CPhaMAS platform was evaluated and compared with existing WinNonlin. RESULTS: The platform was easy to learn and did not require code programming. The accuracy investigation found that the optimized Nelder-Mead method of the CPhaMAS platform showed better accuracy (smaller mean relative error and higher R2) in two-compartment and extravascular administration models when the initial value was set to true and abnormal values (10 times larger or smaller than the true value) compared with the WinNonlin. The mean relative error of the NCA calculation parameters of CPhaMAS and WinNonlin was <0.0001 %. When calculating BE for conventional, high-variability and narrow-therapeutic drugs. The main statistical parameters of the parameters Cmax, AUCt, and AUCinf in CPhaMAS have a mean relative error of <0.01% compared to WinNonLin. CONCLUSIONS: In summary, CPhaMAS is a user-friendly platform with relatively accurate algorithms. It is a powerful tool for analysing pharmacokinetic data for new drug development and precision medicine.


Asunto(s)
Algoritmos , Programas Informáticos , Modelos Teóricos , Preparaciones Farmacéuticas , Proyectos de Investigación
8.
ACS Pharmacol Transl Sci ; 7(2): 406-420, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38357287

RESUMEN

Monoclonal antibody drugs targeting proprotein convertase kwashiorkor type 9 (PCSK9) have recently demonstrated remarkable success in lipid-lowering therapies. Specifically, antibodies derived from immunoglobulin G1 (IgG1, alirocumab) and IgG2 (evolocumab) have been successfully utilized for this purpose. Recently, a novel recombinant fully human anti-PCSK9 monoclonal antibody, originally derived from IgG4 and designated as SAL003, was developed. This study aimed to explore the pharmacokinetics, efficacy, and safety of SAL003 in both single and multiple administrations. The investigation included both healthy individuals and individuals with hyperlipidemia. To comprehensively grasp the pharmacokinetic (PK) and pharmacodynamic (PD) attributes of SAL003, this study employed population PK-PD (popPK-PD) and mechanistic systems pharmacology (MSP) modeling. These models were employed for predicting low-density lipoprotein cholesterol (LDLc) concentrations and appropriate dosages across diverse potential clinical scenarios. The research results indicated that SAL003 demonstrated comparable pharmacokinetic properties to evolocumab, exhibited notable effectiveness in reducing lipid levels, and was confirmed to be safe and well-tolerated in both healthy individuals and individuals with hyperlipidemia. Notably, SAL003 displayed differing effectiveness between patients and healthy populations. This discrepancy was observed in the popPK-PD model, with a positive population influence on Emax, and the MSP model, indicating elevated PCSK9 clearance and LDLr-related LDLc clearance in the healthy group. Simulation results from the popPK-PD and MSP models indicated a dosage of 140 mg of Q4W and 420 mg of Q8W for phase II/III clinical trials. Reducing the drug dose or extending the dosing intervals may result in treatment failure. Additionally, the simultaneous use of statins led to elevated PCSK9 levels and intensified fluctuations in steady-state LDLc levels during SAL003 treatment.

9.
Nanoscale ; 16(6): 3034-3042, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38231532

RESUMEN

Electrocatalytic CO2 reduction (ECR) to high value-added chemicals is an excellent method to attenuate the impact of greenhouse effect caused by CO2. At the same time, multicarbon products (C2+) get extensive attention in view of their relatively high energy density and market price. At present, Cu is an important metal electrocatalyst to convert CO2 into multicarbon products (e.g. ethylene, ethanol, and n-propanol); however, its poor selectivity impedes its practical application. It is well-known that the Cu(100) crystal facet can enhance the selectivity toward multicarbon products among different Cu crystal facets. Herein, the Cu nanoparticles were firstly prepared using the inductive effect of different gases (CO2, CO, Ar, N2, and air) during the Cu electrodeposition processes, in which the CO2-induced Cu catalyst (Cu-CO2) showed the largest normalized content of the Cu(100) crystal facet and the highest C2+ faradaic efficiency of 69% at a current density of 80 mA cm-2 in ECR. Subsequently, the different CO2 pressures during the Cu electrodepositions were studied to reveal the optimal CO2 pressure in the CO2-induced Cu synthesis for improved Cu(100) content as well as C2+ faradaic efficiency. Finally, density functional theory (DFT) calculations confirmed that CO2 molecules preferred to get adsorbed on the Cu(100) crystal facet, which resulted in not only the presence of dominant Cu(100) during the CO2-induced Cu synthesis but also the good electrocatalytic performance in ECR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA