Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 161(1)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38953446

RESUMEN

Two-dimensional (2D) Sn-based perovskites exhibit significant potential in diverse optoelectronic applications, such as on-chip lasers and photodetectors. Yet, the underlying mechanism behind the frequently observed dual-peak emission in 2D Sn-based perovskites remains a subject of intense debate, and there is a lack of research on the carrier dynamics in these materials. In this study, we investigate these issues in a representative 2D Sn-based perovskite, namely, PEA2SnI4, through temperature-, excitation intensity-, angle-, and time-dependent photoluminescence studies. The results indicate that the high- and low-energy peaks originate from in-face and out-of-face dipole transitions, respectively. In addition, we observe an anomalous increase in the non-radiative recombination rate as temperature decreases. After ruling out enhanced electron-phonon coupling and Auger recombination as potential causes of the anomalous carrier dynamics, we propose that the significantly increased exciton binding energy (Eb) plays a decisive role. The increased Eb arises from enhanced electronic localization, a consequence of weakened lattice distortion at low temperatures, as confirmed by first-principles calculations and temperature-dependent x-ray diffraction measurements. These findings offer valuable insights into the electronic processes in the unique 2D Sn-based perovskites.

3.
Nature ; 630(8017): 631-635, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811739

RESUMEN

The increasing demands for more efficient and brighter thin-film light-emitting diodes (LEDs) in flat-panel display and solid-state lighting applications have promoted research into three-dimensional (3D) perovskites. These materials exhibit high charge mobilities and low quantum efficiency droop1-6, making them promising candidates for achieving efficient LEDs with enhanced brightness. To improve the efficiency of LEDs, it is crucial to minimize nonradiative recombination while promoting radiative recombination. Various passivation strategies have been used to reduce defect densities in 3D perovskite films, approaching levels close to those of single crystals3. However, the slow radiative (bimolecular) recombination has limited the photoluminescence quantum efficiencies (PLQEs) of 3D perovskites to less than 80% (refs. 1,3), resulting in external quantum efficiencies (EQEs) of LED devices of less than 25%. Here we present a dual-additive crystallization method that enables the formation of highly efficient 3D perovskites, achieving an exceptional PLQE of 96%. This approach promotes the formation of tetragonal FAPbI3 perovskite, known for its high exciton binding energy, which effectively accelerates the radiative recombination. As a result, we achieve perovskite LEDs with a record peak EQE of 32.0%, with the efficiency remaining greater than 30.0% even at a high current density of 100 mA cm-2. These findings provide valuable insights for advancing the development of high-efficiency and high-brightness perovskite LEDs.

4.
Adv Mater ; : e2400658, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782446

RESUMEN

Ion migration is a major factor affecting the long term stability of perovskite light-emitting diodes (LEDs), which limits their commercialization potential. The accumulation of excess halide ions at the grain boundaries of perovskite films is a primary cause of ion migration in these devices. Here, it is demonstrated that the channels of ion migrations can be effectively impeded by elevating the hole transport layer between the perovskite grain boundaries, resulting in highly stable perovskite LEDs. The unique structure is achieved by reducing the wettability of the perovskites, which prevents infiltration of the upper hole-transporting layer into the spaces of perovskite grain boundaries. Consequently, nanosized gaps are formed between the excess halide ions and the hole transport layer, effectively suppressing ion migration. With this structure, perovskite LEDs with operational half-lifetimes of 256 and 1774 h under current densities of 100 and 20 mA cm-2 respectively are achieved. These lifetimes surpass those of organic LEDs at high brightness. It is further found that this approach can be extended to various perovskite LEDs, showing great promise for promoting perovskite LEDs toward commercial applications.

5.
Adv Mater ; 36(26): e2401916, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38531655

RESUMEN

The iodide vacancy defects generated during the perovskite crystallization process are a common issue that limits the efficiency and stability of perovskite solar cells (PSCs). Although excessive ionic iodides have been used to compensate for these vacancies, they are not effective in reducing defects through modulating the perovskite crystallization. Moreover, these iodide ions present in the perovskite films can act as interstitial defects, which are detrimental to the stability of the perovskite. Here, an effective approach to suppress the formation of vacancy defects by manipulating the coordination chemistry of lead polyhalides during perovskite crystallization is demonstrated. To achieve this suppression, an α-iodo ketone is introduced to undergo a process of Kornblum oxidation reaction that releases halide ions. This process induces a rapid collective transformation of lead polyhalides during the nucleation process and significantly reduces iodide vacancy defects. As a result, the ion mobility is decreased by one order of magnitude in perovskite film and the PSC achieves significantly improved thermal stability, maintaining 82% of its initial power conversion efficiency at 85 °C for 2800 h. These findings highlight the potential of halide ions released by the Kornblum oxidation reaction, which can be widely used for achieving high-performance perovskite optoelectronics.

6.
Nano Lett ; 23(24): 11860-11865, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38085911

RESUMEN

The origin of the long lifetime of self-trapped exciton emission in low-dimensional copper halides is currently the subject of extensive debate. In this study, we address this issue in a prototypical zero-dimensional copper halide, Cs2(C18)2Cu2I4-DMSO, through magneto-optical studies at low temperatures down to 0.2 K. Our results exclude spin-forbidden dark states and indirect phonon-assisted recombination as the origin of the long photoluminescence lifetime. Instead, we propose that the minimal Franck-Condon factor of the radiative transition from excited states to the ground state is the decisive factor, based on the transition probability analysis. Our findings offer insights into the electronic processes in low-dimensional copper halides and have the potential to advance the application of these distinctive materials in optoelectronics.

7.
Adv Mater ; 35(44): e2303144, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37732391

RESUMEN

Realization of electrically pumped laser diodes based on solution-processed semiconductors is a long-standing challenge. Metal halide perovskites have shown great potential toward this goal due to their excellent optoelectronic properties. Continuous-wave (CW) optically pumped lasing in a real electroluminescent device represents a key step to current-injection laser diodes, but it has not yet been realized. This is mainly due to the challenge of incorporating a resonant cavity into an efficient light-emitting diode (LED) able to sustain intensive carrier injection. Here, CW lasing is reported in an efficient perovskite LED with an integrated distributed feedback resonator, which shows a low lasing threshold of 220 W cm-2 at 110 K. Importantly, the LED works well at a current density of 330 A cm-2 , indicating the carrier injection rate already exceeds the threshold of optically pumping. The results suggest that electrically pumped perovskite laser diodes can be achieved once the Joule heating issue is overcome.

8.
J Phys Chem Lett ; 14(16): 3805-3810, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37053436

RESUMEN

In this work, we provide a picture of the band structure of FAPbI3 by investigating low-temperature spin-related photophysics. When the temperature is lower than 120 K, two photoluminescence peaks can be observed. The lifetime of the newly emerged low-energy emission is much longer than that of the original high-energy one by two orders of magnitude. We propose that Rashba effect-caused spin-dependent band splitting is the reason for the emergence of the low-energy emission and verify this using the magneto-optical measurements.

9.
Adv Mater ; 35(3): e2207111, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36305014

RESUMEN

3D perovskites are promising to achieve efficient and bright deep-blue light-emitting diodes (LEDs), which are required for lighting and display applications. However, the efficiency of deep-blue 3D perovskite-based LEDs is limited by high density of defects in perovskites, and their deep-blue emission is not easy to achieve due to the halide phase separation and low solubility of chloride in precursor solutions. Here, an in situ halide exchange method is developed to achieve deep-blue 3D perovskites by spin-coating an organic halide salts solution to treat blue 3D perovskites. It is revealed that the halide-exchange process is mainly determined by halide ion diffusion targeting a concentration equalization, which leads to homogeneous 3D mixed-halide perovskites. By further introducing multifunctional organic ammonium halide salts into the exchange solution to passivate defects, high-quality deep-blue perovskites with reduced trap density can be obtained. This approach leads to efficient deep-blue perovskite LEDs with a peak external quantum efficiency (EQE) of 4.6% and a luminance of 1680 cd m-2 , which show color coordinates of (0.131, 0.055), very close to the Rec. 2020 blue standard. Moreover, the halide exchange method is bidirectional, and blue perovskite LEDs can be achieved with color coordinates of (0.095, 0.160), exhibiting a high EQE of 11.3%.

10.
Adv Mater ; : e2207301, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36524445

RESUMEN

Bright and efficient deep-red light-emitting diodes (LEDs) are important for applications in medical therapy and biological imaging due to the high penetration of deep-red photons into human tissues. Metal-halide perovskites have potential to achieve bright and efficient electroluminescence due to their favorable optoelectronic properties. However, efficient and bright perovskite-based deep-red LEDs have not been achieved yet, due to either Auger recombination in low-dimensional perovskites or trap-assisted nonradiative recombination in 3D perovskites. Here, a lateral Cs4 PbI6 /FAx Cs1- x PbI3 (0D/3D) heterostructure that can enable efficient deep-red perovskite LEDs at very high brightness is demonstrated. The Cs4 PbI6 can facilitate the growth of low-defect FAx Cs1- x PbI3 , and act as low-refractive-index grids, which can simultaneously reduce nonradiative recombination and enhance light extraction. This device reaches a peak external quantum efficiency of 21.0% at a photon flux of 1.75 × 1021 m-2 s-1 , which is almost two orders of magnitude higher than that of reported high-efficiency deep-red perovskite LEDs. Theses LEDs are suitable for pulse oximeters, showing an error <2% of blood oxygen saturation compared with commercial oximeters.

11.
J Phys Chem Lett ; 13(51): 11925-11927, 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36579439

RESUMEN

Sub-bandgap-voltage electroluminescence (EL) has been frequently reported in quantum dot, organic, and perovskite light-emitting diodes. Due to the complex physical process across devices, the underlying mechanism is still under intensive debate. Here, based on thermodynamics, we offer an orthodox explanation of sub-bandgap-voltage EL and discuss the applicability of the previously proposed models.

12.
Adv Mater ; 34(37): e2203180, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35906760

RESUMEN

Tin-based perovskites are a promising candidates to replace their toxic lead-based counterparts in optoelectronic applications, such as light-emitting diodes (LEDs). However, the development of tin perovskite LEDs is slow due to the challenge of obtaining high-quality tin perovskite films. Here, a vapor-assisted spin-coating method is developed to achieve high-quality tin perovskites and high-efficiency LEDs. It is revealed that solvent vapor can lead to in situ recrystallization of tin perovskites during the film-formation process, thus significantly improving the crystalline quality with reduced defects. An antioxidant additive is further introduced to suppress the oxidation of Sn2+ and increase the photoluminescence quantum efficiency up to ≈30%, which is an approximately fourfold enhancement in comparison with that of the control method. As a result, efficient tin perovskite LEDs are achieved with a peak external quantum efficiency of 5.3%, which is among the highest efficiency of lead-free perovskite LEDs.

13.
J Phys Chem Lett ; 13(13): 2963-2968, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35343691

RESUMEN

Here a high-brightness perovskite microcrystalline light-emitting diode (LED) is reported, in which the perovskite microcrystals were grown directly on the conductive substrate and a simple metal-insulator-semiconductor structure was adopted. A peak external quantum efficiency of 0.46% was obtained, which is high for perovskite microcrystalline LEDs. Importantly, the maximum luminance of the device reaches 8848.4 cd m-2, indicating an ultrahigh brightness of >1.2 × 106 cd m-2 for the microcrystals (corresponding to an ultrahigh current density of 80.9 A cm-2), because the light-emitting area of the microcrystals accounts for only ∼0.7% of the device area. In addition, we have studied the degradation of the device at a high current density by in situ microscopic observation and found that a severe Joule heating effect at large injection is the primary problem to be solved to realize electrically pumped perovskite microcrystal lasing.

14.
Adv Mater ; 33(14): e2006302, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33656775

RESUMEN

Room-temperature-high-efficiency light-emitting diodes based on metal halide perovskite FAPbI3 are shown to be able to work perfectly at low temperatures. A peak external quantum efficiency (EQE) of 32.8%, corresponding to an internal quantum efficiency of 100%, is achieved at 45 K. Importantly, the devices show almost no degradation after working at a constant current density of 200 mA m-2 for 330 h. The enhanced EQEs at low temperatures result from the increased photoluminescence quantum efficiencies of the perovskite, which is caused by the increased radiative recombination rate. Spectroscopic and calculation results suggest that the phase transitions of the FAPbI3 play an important role for the enhancement of exciton binding energy, which increases the recombination rate.

15.
J Phys Chem Lett ; 11(24): 10348-10353, 2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33232157

RESUMEN

Efficient and stable deep-blue emission from perovskite light-emitting diodes (LEDs) is required for their application in lighting and displays. However, this is difficult to achieve due to the phase segregation issue of mixed halide perovskites and the challenge of synthesizing high-quality single-halide deep-blue perovskite nanocrystals through a traditional method. Here, we show that an antisolvent treatment can facilitate the in situ formation of perovskite nanocrystals using a facile spin-coating method. We find that the dropping time of the antisolvent can significantly affect the constitution of nanocrystal perovskite films. With a delay in the start time of the antisolvent treatment, small single-halide perovskite nanocrystals can be achieved, exhibiting efficient deep-blue emission. The LED device shows a stable electroluminescence (EL) peak at 465 nm, with a peak external quantum efficiency and a peak current efficiency of 2.4% and 2.5 cd A-1, respectively. This work provides a facile approach to changing the size of perovskite nanocrystals, thus effectively tuning their EL emission spectra.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...