Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (99): e52843, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26067027

RESUMEN

Aerosol deposition (AD) is a thick-film deposition process that can produce layers up to several hundred micrometers thick with densities greater than 95% of the bulk. The primary advantage of AD is that the deposition takes place entirely at ambient temperature; thereby enabling film growth in material systems with disparate melting temperatures. This report describes in detail the processing steps for preparing the powder and for performing AD using the custom-built system. Representative characterization results are presented from scanning electron microscopy, profilometry, and ferromagnetic resonance for films grown in this system. As a representative overview of the capabilities of the system, focus is given to a sample produced following the described protocol and system setup. Results indicate that this system can successfully deposit 11 µm thick yttrium iron garnet films that are  > 90% of the bulk density during a single 5 min deposition run. A discussion of methods to afford better control of the aerosol and particle selection for improved thickness and roughness variations in the film is provided.


Asunto(s)
Compuestos de Hierro/química , Itrio/química , Aerosoles/química , Microscopía Electrónica de Rastreo , Temperatura
2.
ACS Nano ; 4(2): 1108-14, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20099904

RESUMEN

To make graphene technologically viable, the transfer of graphene films to substrates appropriate for specific applications is required. We demonstrate the dry transfer of epitaxial graphene (EG) from the C-face of 4H-SiC onto SiO(2), GaN and Al(2)O(3) substrates using a thermal release tape. Subsequent Hall effect measurements illustrated that minimal degradation in the carrier mobility was induced following the transfer process in lithographically patterned devices. Correspondingly, a large drop in the carrier concentration was observed following the transfer process, supporting the notion that a gradient in the carrier density is present in C-face EG, with lower values being observed in layers further removed from the SiC interface. X-ray photoemission spectra collected from EG films attached to the transfer tape revealed the presence of atomic Si within the EG layers, which may indicate the identity of the unknown intrinsic dopant in EG. Finally, this transfer process is shown to enable EG films amenable for use in device fabrication on arbitrary substrates and films that are deemed most beneficial to carrier transport, as flexible electronic devices or optically transparent contacts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA