Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474299

RESUMEN

NanoFAST is the smallest fluorogen-activating protein, consisting of only 98 amino acids, used as a genetically encoded fluorescent tag. Previously, only a single fluorogen with an orange color was revealed for this protein. In the present paper, using rational mutagenesis and in vitro screening of fluorogens libraries, we expanded the color palette of this tag. We discovered that E46Q is one of the key substitutions enabling the range of possible fluorogens to be expanded. The introduction of this and several other substitutions has made it possible to use not only orange but also red and green fluorogens with the modified protein.


Asunto(s)
Colorantes Fluorescentes , Proteínas , Colorantes Fluorescentes/química
2.
Org Lett ; 25(26): 4892-4897, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37366567

RESUMEN

We report the first total synthesis of racemic Odontosyllis undecimdonta luciferin, a thieno[3,2-f]thiochromene tricarboxylate comprising a 6-6-5-fused tricyclic skeleton with three sulfur atoms in different electronic states. The key transformation is based on tandem condensation of bifunctional thiol-phosphonate, obtained from dimethyl acetylene dicarboxylate, with benzothiophene-6,7-quinone. The presented convergent approach provides the synthesis of the target compound with a previously unreported fused heterocyclic core in 11 steps, thus allowing for unambiguous confirmation of the chemical structure of Odontosyllis luciferin by 2D-NMR spectroscopy.

3.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37373071

RESUMEN

In this work, we have shown that the introduction of a trifluoromethyl group into the me-ta-position of arylidene imidazolones (GFP chromophore core) leads to a dramatic increase in their fluorescence in nonpolar and aprotic media. The presence of a pronounced solvent-dependent gradation of fluorescence intensity makes it possible to use these substances as fluorescent polarity sensors. In particular, we showed that one of the created compounds could be used for selective labeling of the endoplasmic reticulum of living cells.


Asunto(s)
Colorantes , Proteínas Fluorescentes Verdes , Solventes , Espectrometría de Fluorescencia
4.
Pharmaceuticals (Basel) ; 13(8)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722325

RESUMEN

Among acid-sensing ion channels (ASICs), ASIC1a and ASIC3 subunits are the most widespread and prevalent in physiological and pathophysiological conditions. They participate in synaptic plasticity, learning and memory, as well as the perception of inflammatory and neurological pain, making these channels attractive pharmacological targets. Sevanol, a natural lignan isolated from Thymus armeniacus, inhibits the activity of ASIC1a and ASIC3 isoforms, and has a significant analgesic and anti-inflammatory effect. In this work, we described the efficient chemical synthesis scheme of sevanol and its analogues, which allows us to analyze the structure-activity relationships of the different parts of this molecule. We found that the inhibitory activity of sevanol and its analogues on ASIC1a and ASIC3 channels depends on the number and availability of the carboxyl groups of the molecule. At the structural level, we predicted the presence of a sevanol binding site based on the presence of molecular docking in the central vestibule of the ASIC1a channel. We predicted that this site could also be occupied in part by the FRRF-amide peptide, and the competition assay of sevanol with this peptide confirmed this prediction. The intravenous (i.v.), intranasal (i.n.) and, especially, oral (p.o.) administration of synthetic sevanol in animal models produced significant analgesic and anti-inflammatory effects. Both non-invasive methods of sevanol administration (i.n. and p.o.) showed greater efficacy than the invasive (i.v.) method, thus opening new horizons for medicinal uses of sevanol.

5.
Proc Natl Acad Sci U S A ; 116(38): 18911-18916, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31462497

RESUMEN

Marine polychaetes Odontosyllis undecimdonta, commonly known as fireworms, emit bright blue-green bioluminescence. Until the recent identification of the Odontosyllis luciferase enzyme, little progress had been made toward characterizing the key components of this bioluminescence system. Here we present the biomolecular mechanisms of enzymatic (leading to light emission) and nonenzymatic (dark) oxidation pathways of newly described O. undecimdonta luciferin. Spectral studies, including 1D and 2D NMR spectroscopy, mass spectrometry, and X-ray diffraction, of isolated substances allowed us to characterize the luciferin as an unusual tricyclic sulfur-containing heterocycle. Odontosyllis luciferin does not share structural similarity with any other known luciferins. The structures of the Odontosyllis bioluminescent system's low molecular weight components have enabled us to propose chemical transformation pathways for the enzymatic and nonspecific oxidation of luciferin.


Asunto(s)
Sustancias Luminiscentes/química , Poliquetos/química , Animales , Vías Biosintéticas , Color , Indoles/química , Indoles/metabolismo , Sustancias Luminiscentes/metabolismo , Mediciones Luminiscentes , Proteínas Luminiscentes/metabolismo , Estructura Molecular , Oxidación-Reducción , Poliquetos/metabolismo , Pirazinas/química , Pirazinas/metabolismo
6.
Br J Pharmacol ; 175(6): 924-937, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29277899

RESUMEN

BACKGROUND AND PURPOSE: Acid-sensing ion channels (ASICs) play an important role in synaptic plasticity and learning, as well as in nociception and mechanosensation. ASICs are involved in pain and in neurological and psychiatric diseases, but their therapeutic potential is limited by the lack of ligands activating them at physiological pH. EXPERIMENTAL APPROACH: We extracted, purified and determined the structure of a bisbenzylisoquinoline alkaloid, lindoldhamine, (LIN) from laurel leaves. Its effect on ASIC3 channels were characterized, using two-electrode voltage-clamp electrophysiological recordings from Xenopus laevis oocytes. KEY RESULTS: At pH 7.4 or higher, LIN activated a sustained, proton-independent, current through rat and human ASIC3 channels, but not rat ASIC1a or ASIC2a channels. LIN also potentiated proton-induced transient currents and promoted recovery from desensitization in human, but not rat, ASIC3 channels. CONCLUSIONS AND IMPLICATIONS: We describe a novel ASIC subtype-specific agonist LIN, which induced proton-independent activation of human and rat ASIC3 channels at physiological pH. LIN also acts as a positive allosteric modulator of human, but not rat, ASIC3 channels. This unique, species-selective, ligand of ASIC3, opens new avenues in studies of ASIC structure and function, as well as providing new approaches to drug design.


Asunto(s)
Canales Iónicos Sensibles al Ácido/efectos de los fármacos , Alcaloides/farmacología , Laurus/química , Canales Iónicos Sensibles al Ácido/metabolismo , Alcaloides/química , Alcaloides/aislamiento & purificación , Regulación Alostérica/efectos de los fármacos , Animales , Femenino , Humanos , Concentración de Iones de Hidrógeno , Oocitos , Técnicas de Placa-Clamp , Hojas de la Planta , Protones , Ratas , Especificidad de la Especie , Xenopus laevis
7.
Angew Chem Int Ed Engl ; 53(22): 5566-8, 2014 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-24737705

RESUMEN

The structure elucidation and synthesis of the luciferin from the recently discovered luminous earthworm Fridericia heliota is reported. This luciferin is a key component of a novel ATP-dependent bioluminescence system. UV, fluorescence, NMR, and HRMS spectroscopy studies were performed on 0.005 mg of the isolated substance and revealed four isomeric structures that conform to spectral data. These isomers were chemically synthesized and one of them was found to produce light when reacted with a protein extract from F. heliota. The novel luciferin was found to have an unusual extensively modified peptidic nature, thus implying an unprecedented mechanism of action.


Asunto(s)
Sustancias Luminiscentes/química , Oligoquetos/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Isomerismo , Sustancias Luminiscentes/síntesis química , Mediciones Luminiscentes , Péptidos/química , Siberia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...