Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Light Sci Appl ; 13(1): 190, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39138182

RESUMEN

Materials for radiation detection are critically important and urgently demanded in diverse fields, starting from fundamental scientific research to medical diagnostics, homeland security, and environmental monitoring. Low-dimensional halides (LDHs) exhibiting efficient self-trapped exciton (STE) emission with high photoluminescence quantum yield (PLQY) have recently shown a great potential as scintillators. However, an overlooked issue of exciton-exciton interaction in LDHs under ionizing radiation hinders the broadening of its radiation detection applications. Here, we demonstrate an exceptional enhancement of exciton-harvesting efficiency in zero-dimensional (0D) Cs3Cu2I5:Tl halide single crystals by forming strongly localized Tl-bound excitons. Because of the suppression of non-radiative exciton-exciton interaction, an excellent α/ß pulse-shape-discrimination (PSD) figure-of-merit (FoM) factor of 2.64, a superior rejection ratio of 10-9, and a high scintillation yield of 26 000 photons MeV-1 under 5.49 MeV α-ray are achieved in Cs3Cu2I5:Tl single crystals, outperforming the commercial ZnS:Ag/PVT composites for charged particle detection applications. Furthermore, a radiation detector prototype based on Cs3Cu2I5:Tl single crystal demonstrates the capability of identifying radioactive 220Rn gas for environmental radiation monitoring applications. We believe that the exciton-harvesting strategy proposed here can greatly boost the applications of LDHs materials.

2.
Materials (Basel) ; 17(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39203203

RESUMEN

In this study, we propose novel three-layer composite scintillators designed for the simultaneous detection of different ionizing radiation components. These scintillators are based on epitaxial structures of LuAG and YAG garnets, doped with Ce3+ and Sc3+ ions. Samples of these composite scintillators, containing YAG:Ce and LuAG:Ce single crystalline films with different thicknesses and LuAG:Sc single crystal substrates, were grown using the liquid phase epitaxy method from melt solutions based on PbO-B2O3 fluxes. The scintillation properties of the proposed composites, YAG:Ce film/LuAG:Sc film/LuAG:Ce crystal and YAG:Ce film/LuAG:Ce film/LuAG:Sc crystal, were investigated under excitation by radiation with α-particles from a 239Pu source, ß-particles from 90Sr sources and γ-rays from a 137Cs source. Considering the properties of the mentioned composite scintillators, special attention was paid to the ability of simultaneous separation of the different components of mixed ionizing radiation containing the mentioned particles and quanta using scintillation decay kinetics. The differences in scintillation decay curves under α- and ß-particle and γ-ray excitations were characterized using figure of merit (FOM) values at various scintillation decay intensity levels (1/e, 0.1, 0.05, 0.01).

3.
Nano Lett ; 24(27): 8248-8256, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38949190

RESUMEN

Fast emitting polymeric scintillators are requested in advanced applications where high speed detectors with a large signal-to-noise ratio are needed. However, their low density implies a weak stopping power of high energy radiation and thus a limited light output and sensitivity. To enhance their performance, polymeric scintillators can be loaded with dense nanoparticles (NPs). We investigate the properties of a series of polymeric scintillators by means of photoluminescence and scintillation spectroscopy, comparing standard scintillators with a composite system loaded with dense hafnium dioxide (HfO2) NPs. The nanocomposite shows a scintillation yield enhancement of +100% with an unchanged time response. We provide for the first time an interpretation of this effect, pointing out the local effect of NPs in the generation of emissive states upon interaction with ionizing radiation. The obtained results indicate that coupling fast conjugated emitters with optically inert dense NPs could lead to surpassing the actual limits of pure polymeric scintillators.

4.
Materials (Basel) ; 15(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36431411

RESUMEN

The crystals of (Lu,Gd)3(Ga,Al)5O12 multicomponent garnets with high density ρ and effective atomic number Zeff are characterized by high scintillation efficiency and a light yield value up to 50,000 ph/MeV. During recent years, single-crystalline films and composite film/crystal scintillators were developed on the basis of these multicomponent garnets. These film/crystal composites are potentially applicable for particle identification by pulse shape discrimination due to the fact that α-particles excite only the film response, γ-radiation excites only the substrate response, and ß-particles excite both to some extent. Here, we present new results regarding scintillating properties of selected (Lu,Gd)3(Ga,Al)5O12:Ce single-crystalline films under excitation by alpha and beta particles and gamma ray photons. We conclude that some of studied compositions are indeed suitable for testing in the proposed application, most notably Lu1.5Gd1.5Al3Ga2O12:Ce film on the GAGG:Ce substrate, exhibiting an α-particle-excited light yield of 1790-2720 ph/MeV and significantly different decay curves excited by α- and γ-radiation.

5.
ACS Appl Mater Interfaces ; 14(12): 14157-14164, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35302349

RESUMEN

Low-dimensional organic-metal halides are regarded as an emerging class of X-ray scintillation materials, but most of the discovered compounds are confronted with challenges of toxicity and instability. To address these challenges, we herein report two lead-free zero-dimensional (0D) hybrid halides, (Bmpip)2Cu2Br4 and PPh4CuBr2 single crystals, grown by the low-cost solution-processing method. By single-crystal X-ray diffraction refinement, the crystal structures of (Bmpip)2Cu2Br4 and PPh4CuBr2 were determined to be orthorhombic and monoclinic crystal systems, respectively. (Bmpip)2Cu2Br4 and PPh4CuBr2 show broadband orange and yellow emissions peaking at 620 and 538 nm, respectively. Different from the emission nature of the recent reported Cu-based halide hybrids, both (Bmpip)2Cu2Br4 and PPh4CuBr2 emit from excitons bound to defects featuring spin-allowed transition, enabling them to possess fast scintillation decay time of tens of nanoseconds, respectively. In particular, the (Bmpip)2Cu2Br4 single crystal has a high photoluminescence quantum yield of 48.2%, a high scintillation yield of 16,000 photons/MeV, and a low detection limit of 710 nGyair/s. Due to the combination of nontoxicity, long-term stability, and decent detection performance, (Bmpip)2Cu2Br4 could be regarded as a promising X-ray scintillator.

6.
Nanomaterials (Basel) ; 11(12)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34947738

RESUMEN

The sensitization of scintillation was investigated in crosslinked polymeric composite materials loaded with luminescent gold clusters aggregates acting as sensitizers, and with organic dye rhodamine 6G as the emitting species. The evolution in time of the excited states population in the systems is described by a set of coupled rate equations, in which steady state solution allowed obtainment of an expression of the sensitization efficacy as a function of the characteristic parameters of the employed luminescent systems. The results obtained indicate that the realization of sensitizer/emitter scintillating complexes is the strategy that must be pursued to maximize the sensitization effect in composite materials.

7.
ACS Appl Mater Interfaces ; 13(10): 12198-12202, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33656315

RESUMEN

A novel all-inorganic CsCu2I3 single-crystalline perovskite as a nonhygroscopic and efficient X-ray and γ-ray scintillator is described herein. It is featured by a one-dimensional (1D) perovskite structure with an orthorhombic system and a space group of Cmcm. The CsCu2I3 crystal emits yellow light peaking at 570 nm originated from strongly localized 1D exciton emission. It appears self-absorption free because of the large Stokes shift of 1.54 eV. The photophysics process of the self-trapped exciton was studied using temperature dependent photoluminescene spectra and decay kinetics measurements. The CsCu2I3 crystal exhibits an extremely low afterglow level of 0.008% at 10 ms under X-ray excitation. Under 137Cs γ-ray irradiation, its light yield is 16 000 photons/MeV with an energy resolution of 7.8% at 662 keV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA