Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cell Rep Methods ; 1(6): 100069, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-35474894

RESUMEN

The compounding challenges of low signal, high background, and uncertain targets plague many metagenomic sequencing efforts. One solution has been DNA capture, wherein probes are designed to hybridize with target sequences, enriching them in relation to their background. However, balancing probe depth with breadth of capture is challenging for diverse targets. To find this balance, we have developed the HUBDesign pipeline, which makes use of sequence homology to design probes at multiple taxonomic levels. This creates an efficient probe set capable of simultaneously and specifically capturing known and related sequences. We validated HUBDesign by generating probe sets targeting the breadth of coronavirus diversity, as well as a suite of bacterial pathogens often underlying sepsis. In separate experiments demonstrating significant, simultaneous enrichment, we captured SARS-CoV-2 and HCoV-NL63 in a human RNA background and seven bacterial strains in human blood. HUBDesign (https://github.com/zacherydickson/HUBDesign) has broad applicability wherever there are multiple organisms of interest.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Metagenoma , Bacterias/genética
3.
Nat Commun ; 11(1): 4048, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32873779

RESUMEN

Pleistocene glacial-interglacial cycles are correlated with dramatic temperature oscillations. Examining how species responded to these natural fluctuations can provide valuable insights into the impacts of present-day anthropogenic climate change. Here we present a phylogeographic study of the extinct American mastodon (Mammut americanum), based on 35 complete mitochondrial genomes. These data reveal the presence of multiple lineages within this species, including two distinct clades from eastern Beringia. Our molecular date estimates suggest that these clades arose at different times, supporting a pattern of repeated northern expansion and local extirpation in response to glacial cycling. Consistent with this hypothesis, we also note lower levels of genetic diversity among northern mastodons than in endemic clades south of the continental ice sheets. The results of our study highlight the complex relationships between population dispersals and climate change, and can provide testable hypotheses for extant species expected to experience substantial biogeographic impacts from rising temperatures.


Asunto(s)
Cambio Climático , Especiación Genética , Genoma Mitocondrial , Mastodontes/genética , Animales , ADN Antiguo/análisis , ADN Antiguo/aislamiento & purificación , ADN Mitocondrial/genética , ADN Mitocondrial/aislamiento & purificación , Femenino , Fósiles , Masculino , Filogeografía
4.
Artículo en Inglés | MEDLINE | ID: mdl-31611361

RESUMEN

Identification of the nucleotide sequences encoding antibiotic resistance elements and determination of their association with antibiotic resistance are critical to improve surveillance and monitor trends in antibiotic resistance. Current methods to study antibiotic resistance in various environments rely on extensive deep sequencing or laborious culturing of fastidious organisms, both of which are heavily time-consuming operations. An accurate and sensitive method to identify both rare and common resistance elements in complex metagenomic samples is needed. Referencing the sequences in the Comprehensive Antibiotic Resistance Database, we designed a set of 37,826 probes to specifically target over 2,000 nucleotide sequences associated with antibiotic resistance in clinically relevant bacteria. Testing of this probe set on DNA libraries generated from multidrug-resistant bacteria to selectively capture resistance genes reproducibly produced higher numbers of reads on target at a greater length of coverage than shotgun sequencing. We also identified additional resistance gene sequences from human gut microbiome samples that sequencing alone was not able to detect. Our method to capture the resistome enables a sensitive means of gene detection in diverse environments where genes encoding antibiotic resistance represent less than 0.1% of the metagenome.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Metagenoma , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Sondas de ADN/genética , Bases de Datos Genéticas , Farmacorresistencia Bacteriana Múltiple/genética , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Genoma Bacteriano , Humanos , Metagenómica/métodos , Microbiota/efectos de los fármacos , Microbiota/genética , Secuenciación Completa del Genoma
5.
Curr Biol ; 29(12): 2031-2042.e6, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31178321

RESUMEN

Living sloths represent two distinct lineages of small-sized mammals that independently evolved arboreality from terrestrial ancestors. The six extant species are the survivors of an evolutionary radiation marked by the extinction of large terrestrial forms at the end of the Quaternary. Until now, sloth evolutionary history has mainly been reconstructed from phylogenetic analyses of morphological characters. Here, we used ancient DNA methods to successfully sequence 10 extinct sloth mitogenomes encompassing all major lineages. This includes the iconic continental ground sloths Megatherium, Megalonyx, Mylodon, and Nothrotheriops and the smaller endemic Caribbean sloths Parocnus and Acratocnus. Phylogenetic analyses identify eight distinct lineages grouped in three well-supported clades, whose interrelationships are markedly incongruent with the currently accepted morphological topology. We show that recently extinct Caribbean sloths have a single origin but comprise two highly divergent lineages that are not directly related to living two-fingered sloths, which instead group with Mylodon. Moreover, living three-fingered sloths do not represent the sister group to all other sloths but are nested within a clade of extinct ground sloths including Megatherium, Megalonyx, and Nothrotheriops. Molecular dating also reveals that the eight newly recognized sloth families all originated between 36 and 28 million years ago (mya). The early divergence of recently extinct Caribbean sloths around 35 mya is consistent with the debated GAARlandia hypothesis postulating the existence at that time of a biogeographic connection between northern South America and the Greater Antilles. This new molecular phylogeny has major implications for reinterpreting sloth morphological evolution, biogeography, and diversification history.


Asunto(s)
Evolución Biológica , ADN Antiguo/análisis , Genoma Mitocondrial , Filogenia , Perezosos/clasificación , Distribución Animal , Animales , Perezosos/genética , Perezosos/fisiología
6.
Proc Biol Sci ; 285(1878)2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29769358

RESUMEN

Mylodon darwinii is the extinct giant ground sloth named after Charles Darwin, who first collected its remains in South America. We have successfully obtained a high-quality mitochondrial genome at 99-fold coverage using an Illumina shotgun sequencing of a 12 880-year-old bone fragment from Mylodon Cave in Chile. Low level of DNA damage showed that this sample was exceptionally well preserved for an ancient subfossil, probably the result of the dry and cold conditions prevailing within the cave. Accordingly, taxonomic assessment of our shotgun metagenomic data showed a very high percentage of endogenous DNA with 22% of the assembled metagenomic contigs assigned to Xenarthra. Additionally, we enriched over 15 kb of sequence data from seven nuclear exons, using target sequence capture designed against a wide xenarthran dataset. Phylogenetic and dating analyses of the mitogenomic dataset including all extant species of xenarthrans and the assembled nuclear supermatrix unambiguously place Mylodon darwinii as the sister-group of modern two-fingered sloths, from which it diverged around 22 million years ago. These congruent results from both the mitochondrial and nuclear data support the diphyly of the two modern sloth lineages, implying the convergent evolution of their unique suspensory behaviour as an adaption to arboreality. Our results offer promising perspectives for whole-genome sequencing of this emblematic extinct taxon.


Asunto(s)
ADN Antiguo/análisis , Genoma Mitocondrial , Xenarthra/clasificación , Animales , Chile , ADN Mitocondrial/análisis , Exones/genética , Fósiles , Filogenia , Perezosos/clasificación , Perezosos/genética , Xenarthra/genética
7.
Curr Biol ; 27(20): 3149-3156.e11, 2017 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-29033326

RESUMEN

Situated at the furthest northeastern edge of Canada, the island of Newfoundland (approximately 110,000 km2) and Labrador (approximately 295,000 km2) today constitute a province characterized by abundant natural resources but low population density. Both landmasses were covered by the Laurentide ice sheet during the Last Glacial Maximum (18,000 years before present [YBP]); after the glacier retreated, ice patches remained on the island until ca. 9,000 calibrated (cal) YBP [1]. Nevertheless, indigenous peoples, whose ancestors had trekked some 5,000 km from the west coast, arrived approximately 10,000 cal YBP in Labrador and ca. 6,000 cal YBP in Newfoundland [2, 3]. Differential features in material culture indicate at least three settlement episodes by distinct cultural groups, including the Maritime Archaic, Palaeoeskimo, and Beothuk. Newfoundland has remained home to indigenous peoples until present day with only one apparent hiatus (3,400-2,800 YBP). This record suggests abandonment, severe constriction, or local extinction followed by subsequent immigrations from single or multiple source populations, but the specific dynamics and the cultural and biological relationships, if any, among these successive peoples remain enigmatic [4]. By examining the mitochondrial genome diversity and isotopic ratios of 74 ancient remains in conjunction with the archaeological record, we have provided definitive evidence for the genetic discontinuity between the maternal lineages of these populations. This northeastern margin of North America appears to have been populated multiple times by distinct groups that did not share a recent common ancestry, but rather one much deeper in time at the entry point into the continent.


Asunto(s)
ADN Antiguo/análisis , Variación Genética , Genoma Humano , Genoma Mitocondrial , Migración Humana , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Arqueología , Niño , Preescolar , Femenino , Humanos , Indígenas Norteamericanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Terranova y Labrador , Adulto Joven
8.
Elife ; 62017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28072390

RESUMEN

Pregnancy complications are poorly represented in the archeological record, despite their importance in contemporary and ancient societies. While excavating a Byzantine cemetery in Troy, we discovered calcified abscesses among a woman's remains. Scanning electron microscopy of the tissue revealed 'ghost cells', resulting from dystrophic calcification, which preserved ancient maternal, fetal and bacterial DNA of a severe infection, likely chorioamnionitis. Gardnerella vaginalis and Staphylococcus saprophyticus dominated the abscesses. Phylogenomic analyses of ancient, historical, and contemporary data showed that G. vaginalis Troy fell within contemporary genetic diversity, whereas S. saprophyticus Troy belongs to a lineage that does not appear to be commonly associated with human disease today. We speculate that the ecology of S. saprophyticus infection may have differed in the ancient world as a result of close contacts between humans and domesticated animals. These results highlight the complex and dynamic interactions with our microbial milieu that underlie severe maternal infections.


Asunto(s)
Absceso/patología , Fósiles , Infecciones por Bacterias Grampositivas/patología , Complicaciones Infecciosas del Embarazo/patología , Absceso/microbiología , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Femenino , Gardnerella vaginalis/clasificación , Gardnerella vaginalis/genética , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Microscopía Electrónica de Rastreo , Embarazo , Staphylococcus saprophyticus/clasificación , Staphylococcus saprophyticus/genética
9.
Curr Biol ; 26(23): R1220-R1222, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27923126

RESUMEN

The historical record attests to the devastation malaria exacted on ancient civilizations, particularly the Roman Empire [1]. However, evidence for the presence of malaria during the Imperial period in Italy (1st-5th century CE) is based on indirect sources, such as historical, epigraphic, or skeletal evidence. Although these sources are crucial for revealing the context of this disease, they cannot establish the causative species of Plasmodium. Importantly, definitive evidence for the presence of malaria is now possible through the implementation of ancient DNA technology. As malaria is presumed to have been at its zenith during the Imperial period [1], we selected first or second molars from 58 adults from three cemeteries from this time: Isola Sacra (associated with Portus Romae, 1st-3rd century CE), Velia (1st-2nd century CE), and Vagnari (1st-4th century CE). We performed hybridization capture using baits designed from the mitochondrial (mtDNA) genomes of Plasmodium spp. on a prioritized subset of 11 adults (informed by metagenomic sequencing). The mtDNA sequences generated provided compelling phylogenetic evidence for the presence of P. falciparum in two individuals. This is the first genomic data directly implicating P. falciparum in Imperial period southern Italy in adults.


Asunto(s)
Malaria Falciparum/historia , Plasmodium falciparum/aislamiento & purificación , Cadáver , ADN Mitocondrial/genética , ADN Protozoario/genética , Historia Antigua , Humanos , Italia/epidemiología , Malaria Falciparum/epidemiología , Diente Molar/química , Plasmodium falciparum/genética , Mundo Romano/historia
10.
Curr Biol ; 26(4): R155-6, 2016 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-26906483

RESUMEN

Among the fossils of hitherto unknown mammals that Darwin collected in South America between 1832 and 1833 during the Beagle expedition were examples of the large, heavily armored herbivores later known as glyptodonts. Ever since, glyptodonts have fascinated evolutionary biologists because of their remarkable skeletal adaptations and seemingly isolated phylogenetic position even within their natural group, the cingulate xenarthrans (armadillos and their allies). In possessing a carapace comprised of fused osteoderms, the glyptodonts were clearly related to other cingulates, but their precise phylogenetic position as suggested by morphology remains unresolved. To provide a molecular perspective on this issue, we designed sequence-capture baits using in silico reconstructed ancestral sequences and successfully assembled the complete mitochondrial genome of Doedicurus sp., one of the largest glyptodonts. Our phylogenetic reconstructions establish that glyptodonts are in fact deeply nested within the armadillo crown-group, representing a distinct subfamily (Glyptodontinae) within family Chlamyphoridae. Molecular dating suggests that glyptodonts diverged no earlier than around 35 million years ago, in good agreement with their fossil record. Our results highlight the derived nature of the glyptodont morphotype, one aspect of which is a spectacular increase in body size until their extinction at the end of the last ice age.


Asunto(s)
Evolución Biológica , Fósiles , Genoma Mitocondrial , Mamíferos/clasificación , Mamíferos/genética , Filogenia , Animales , Extinción Biológica , Fósiles/anatomía & histología , Mamíferos/anatomía & histología , Datos de Secuencia Molecular
11.
Elife ; 5: e12994, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26795402

RESUMEN

The 14th-18th century pandemic of Yersinia pestis caused devastating disease outbreaks in Europe for almost 400 years. The reasons for plague's persistence and abrupt disappearance in Europe are poorly understood, but could have been due to either the presence of now-extinct plague foci in Europe itself, or successive disease introductions from other locations. Here we present five Y. pestis genomes from one of the last European outbreaks of plague, from 1722 in Marseille, France. The lineage identified has not been found in any extant Y. pestis foci sampled to date, and has its ancestry in strains obtained from victims of the 14th century Black Death. These data suggest the existence of a previously uncharacterized historical plague focus that persisted for at least three centuries. We propose that this disease source may have been responsible for the many resurgences of plague in Europe following the Black Death.


Asunto(s)
Genoma Bacteriano , Genotipo , Peste/epidemiología , Peste/historia , Yersinia pestis/clasificación , Yersinia pestis/aislamiento & purificación , Europa (Continente)/epidemiología , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Epidemiología Molecular , Yersinia pestis/genética
12.
Mol Biol Evol ; 33(3): 621-42, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26556496

RESUMEN

Xenarthra (armadillos, sloths, and anteaters) constitutes one of the four major clades of placental mammals. Despite their phylogenetic distinctiveness in mammals, a reference phylogeny is still lacking for the 31 described species. Here we used Illumina shotgun sequencing to assemble 33 new complete mitochondrial genomes, establishing Xenarthra as the first major placental clade to be fully sequenced at the species level for mitogenomes. The resulting data set allowed the reconstruction of a robust phylogenetic framework and timescale that are consistent with previous studies conducted at the genus level using nuclear genes. Incorporating the full species diversity of extant xenarthrans points to a number of inconsistencies in xenarthran systematics and species definition. We propose to split armadillos into two distinct families Dasypodidae (dasypodines) and Chlamyphoridae (euphractines, chlamyphorines, and tolypeutines) to better reflect their ancient divergence, estimated around 42 Ma. Species delimitation within long-nosed armadillos (genus Dasypus) appeared more complex than anticipated, with the discovery of a divergent lineage in French Guiana. Diversification analyses showed Xenarthra to be an ancient clade with a constant diversification rate through time with a species turnover driven by high but constant extinction. We also detected a significant negative correlation between speciation rate and past temperature fluctuations with an increase in speciation rate corresponding to the general cooling observed during the last 15 My. Biogeographic reconstructions identified the tropical rainforest biome of Amazonia and the Guiana Shield as the cradle of xenarthran evolutionary history with subsequent dispersions into more open and dry habitats.


Asunto(s)
Evolución Molecular , Genoma Mitocondrial , Genómica , Filogenia , Xenarthra/clasificación , Xenarthra/genética , Animales , Teorema de Bayes , Evolución Biológica , Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento
13.
Biotechniques ; 59(1): 19-25, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26156780

RESUMEN

DNA damage in the form of abasic sites, chemically altered nucleotides, and strand fragmentation is the foremost limitation in obtaining genetic information from many ancient samples. Upon cell death, DNA continues to endure various chemical attacks such as hydrolysis and oxidation, but repair pathways found in vivo no longer operate. By incubating degraded DNA with specific enzyme combinations adopted from these pathways, it is possible to reverse some of the post-mortem nucleic acid damage prior to downstream analyses such as library preparation, targeted enrichment, and high-throughput sequencing. Here, we evaluate the performance of two available repair protocols on previously characterized DNA extracts from four mammoths. Both methods use endonucleases and glycosylases along with a DNA polymerase-ligase combination. PreCR Repair Mix increases the number of molecules converted to sequencing libraries, leading to an increase in endogenous content and a decrease in cytosine-to-thymine transitions due to cytosine deamination. However, the effects of Nelson Repair Mix on repair of DNA damage remain inconclusive.


Asunto(s)
Huesos/química , Daño del ADN , Enzimas Reparadoras del ADN/química , ADN/química , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mamuts/genética , Animales , Fósiles
14.
Biol Lett ; 11(3)2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25808000

RESUMEN

The present erratum is in regards to our article entitled 'Ancient DNA and the tropics: a rodent's tale'. We were made aware of problems with some of the ancient sequences submitted to GenBank and conducted a systematic review of all the files used in our study. We discovered that, unfortunately, an incorrect file was sent to GenBank and was also used in some of our downstream analyses. We immediately contacted GenBank, explained the situation and corrected the file. We have redone some analyses with the correct file and describe these changes below.

15.
Biol Lett ; 10(6)2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24899682

RESUMEN

Most genetic studies of Holocene fauna have been performed with ancient samples from dry and cold regions, in which preservation of fossils is facilitated and molecular damage is reduced. Ancient DNA work from tropical regions has been precluded owing to factors that limit DNA preservation (e.g. temperature, hydrolytic damage). We analysed ancient DNA from rodent jawbones identified as Ototylomys phyllotis, found in Holocene and Late Pleistocene stratigraphic layers from Loltún, a humid tropical cave located in the Yucatan peninsula. We extracted DNA and amplified six short overlapping fragments of the cytochrome b gene, totalling 666 bp, which represents an unprecedented success considering tropical ancient DNA samples. We performed genetic, phylogenetic and divergence time analyses, combining sequences from ancient and modern O. phyllotis, in order to assess the ancestry of the Loltún samples. Results show that all ancient samples fall into a unique clade that diverged prior to the divergence of the modern O. phyllotis, supporting it as a distinct Pleistocene form of the Ototylomys genus. Hence, this rodent's tale suggests that the sister group to modern O. phyllotis arose during the Miocene-Pliocene, diversified during the Pleistocene and went extinct in the Holocene.


Asunto(s)
Arvicolinae/genética , Evolución Molecular , Fósiles , Animales , Citocromos b/genética , ADN/genética , México , Filogenia , Análisis de Secuencia de ADN , Factores de Tiempo , Clima Tropical
16.
Mol Biol Evol ; 31(5): 1292-4, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24531081

RESUMEN

We report metrics from complete genome capture of nuclear DNA from extinct mammoths using biotinylated RNAs transcribed from an Asian elephant DNA extract. Enrichment of the nuclear genome ranged from 1.06- to 18.65-fold, to an apparent maximum threshold of ∼80% on-target. This projects an order of magnitude less costly complete genome sequencing from long-dead organisms, even when a reference genome is unavailable for bait design.


Asunto(s)
Genoma , Genómica/métodos , Mamuts/genética , Análisis de Secuencia de ADN/métodos , Animales , ADN/genética , ADN/aislamiento & purificación , Elefantes/genética , Fósiles , Historia Antigua , Alineación de Secuencia/métodos
17.
Lancet Infect Dis ; 14(4): 319-26, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24480148

RESUMEN

BACKGROUND: Yersinia pestis has caused at least three human plague pandemics. The second (Black Death, 14-17th centuries) and third (19-20th centuries) have been genetically characterised, but there is only a limited understanding of the first pandemic, the Plague of Justinian (6-8th centuries). To address this gap, we sequenced and analysed draft genomes of Y pestis obtained from two individuals who died in the first pandemic. METHODS: Teeth were removed from two individuals (known as A120 and A76) from the early medieval Aschheim-Bajuwarenring cemetery (Aschheim, Bavaria, Germany). We isolated DNA from the teeth using a modified phenol-chloroform method. We screened DNA extracts for the presence of the Y pestis-specific pla gene on the pPCP1 plasmid using primers and standards from an established assay, enriched the DNA, and then sequenced it. We reconstructed draft genomes of the infectious Y pestis strains, compared them with a database of genomes from 131 Y pestis strains from the second and third pandemics, and constructed a maximum likelihood phylogenetic tree. FINDINGS: Radiocarbon dating of both individuals (A120 to 533 AD [plus or minus 98 years]; A76 to 504 AD [plus or minus 61 years]) places them in the timeframe of the first pandemic. Our phylogeny contains a novel branch (100% bootstrap at all relevant nodes) leading to the two Justinian samples. This branch has no known contemporary representatives, and thus is either extinct or unsampled in wild rodent reservoirs. The Justinian branch is interleaved between two extant groups, 0.ANT1 and 0.ANT2, and is distant from strains associated with the second and third pandemics. INTERPRETATION: We conclude that the Y pestis lineages that caused the Plague of Justinian and the Black Death 800 years later were independent emergences from rodents into human beings. These results show that rodent species worldwide represent important reservoirs for the repeated emergence of diverse lineages of Y pestis into human populations. FUNDING: McMaster University, Northern Arizona University, Social Sciences and Humanities Research Council of Canada, Canada Research Chairs Program, US Department of Homeland Security, US National Institutes of Health, Australian National Health and Medical Research Council.


Asunto(s)
ADN Bacteriano/aislamiento & purificación , Pandemias/historia , Filogenia , Peste/historia , Yersinia pestis/genética , África/epidemiología , Animales , Asia/epidemiología , Reservorios de Enfermedades , Europa (Continente)/epidemiología , Historia Medieval , Humanos , Peste/epidemiología , Peste/genética , Diente/microbiología , Yersinia pestis/aislamiento & purificación
18.
N Engl J Med ; 370(4): 334-40, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24401020

RESUMEN

In the 19th century, there were several major cholera pandemics in the Indian subcontinent, Europe, and North America. The causes of these outbreaks and the genomic strain identities remain a mystery. We used targeted high-throughput sequencing to reconstruct the Vibrio cholerae genome from the preserved intestine of a victim of the 1849 cholera outbreak in Philadelphia, part of the second cholera pandemic. This O1 biotype strain has 95 to 97% similarity with the classical O395 genome, differing by 203 single-nucleotide polymorphisms (SNPs), lacking three genomic islands, and probably having one or more tandem cholera toxin prophage (CTX) arrays, which potentially affected its virulence. This result highlights archived medical remains as a potential resource for investigations into the genomic origins of past pandemics.


Asunto(s)
Cólera/historia , Pandemias/historia , Vibrio cholerae/genética , Técnicas de Tipificación Bacteriana , Cólera/epidemiología , Cólera/microbiología , ADN Bacteriano/aislamiento & purificación , ADN Mitocondrial/análisis , Evolución Molecular , Genoma Bacteriano , Islas Genómicas , Historia del Siglo XIX , Humanos , Intestinos/microbiología , Intestinos/patología , Masculino , Philadelphia/epidemiología , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Vibrio cholerae/clasificación , Vibrio cholerae/patogenicidad , Virulencia , Factores de Virulencia/análisis
19.
Methods Mol Biol ; 840: 37-42, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22237519

RESUMEN

Paleofeces are the nonmineralized remains of dung from extant and extinct fauna. They represent a surprisingly large proportion of fossil remains recovered from cave sites across the world. Paleofeces contain the DNA of the defecator as well as the DNA of ingested plant and animal remains. To successfully extract DNA from paleofeces, a balance must be achieved between the minimization of DNA loss during extraction and the removal of coeluates that would otherwise inhibit the Taq DNA polymerase during downstream applications. Here we present a simplified version of a protocol to extract DNA from paleofecal remains.


Asunto(s)
ADN/aislamiento & purificación , Extinción Biológica , Heces/química , Paleontología/métodos , Animales , Dióxido de Silicio/química
20.
BMC Evol Biol ; 11: 30, 2011 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-21272315

RESUMEN

BACKGROUND: Quaternary plant ecology in much of the world has historically relied on morphological identification of macro- and microfossils from sediments of small freshwater lakes. Here, we report new protocols that reliably yield DNA sequence data from Holocene plant macrofossils and bulk lake sediment used to infer ecological change. This will allow changes in census populations, estimated from fossils and associated sediment, to be directly associated with population genetic changes. RESULTS: We successfully sequenced DNA from 64 samples (out of 126) comprised of bulk sediment and seeds, leaf fragments, budscales, and samaras extracted from Holocene lake sediments in the western Great Lakes region of North America. Overall, DNA yields were low. However, we were able to reliably amplify samples with as few as 10 copies of a short cpDNA fragment with little detectable PCR inhibition. Our success rate was highest for sediments < 2000 years old, but we were able to successfully amplify DNA from samples up to 4600 years old. DNA sequences matched the taxonomic identity of the macrofossil from which they were extracted 79% of the time. Exceptions suggest that DNA molecules from surrounding nearby sediments may permeate or adhere to macrofossils in sediments. CONCLUSIONS: An ability to extract ancient DNA from Holocene sediments potentially allows exciting new insights into the genetic consequences of long-term environmental change. The low DNA copy numbers we found in fossil material and the discovery of multiple sequence variants from single macrofossil extractions highlight the need for careful experimental and laboratory protocols. Further application of these protocols should lead to better understanding of the ecological and evolutionary consequences of environmental change.


Asunto(s)
ADN de Plantas/genética , Fósiles , Sedimentos Geológicos/análisis , Plantas/genética , Great Lakes Region , Datos de Secuencia Molecular , Filogenia , Plantas/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...