Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Pharm ; 21(6): 2699-2712, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38747900

RESUMEN

This study aims to encapsulate gemcitabine (GEM) using a phospholipid complex (PLC) in lipid nanoparticles (NPs) to achieve several desirable outcomes, including high drug loading, uniform particle size, improved therapeutic efficacy, and reduced toxicities. The successful preparation of GEM-loaded lipid NPs (GEM-NPs) was accomplished using the emulsification-solidification method, following optimization through Box-Behnken design. The size of the GEM-NP was 138.5 ± 6.7 nm, with a low polydispersity index of 0.282 ± 0.078, as measured by a zetasizer and confirmed by transmission electron and atomic force microscopy. GEM-NPs demonstrated sustained release behavior, surpassing the performance of the free GEM and phospholipid complex. Moreover, GEM-NPs exhibited enhanced cytotoxicity, apoptosis, and cell uptake in Panc-2 and Mia PaCa cells compared to the free GEM. The in vivo pharmacokinetics revealed approximately 4-fold higher bioavailability of GEM-NPs in comparison with free GEM. Additionally, the pharmacodynamic evaluation conducted in a DMBA-induced pancreatic cancer model, involving histological examination, serum IL-6 level estimation, and expression of cleaved caspase-3, showed the potential of GEM-NPs in the management of pancreatic cancer. Consequently, the lipid NP-based approach developed in our investigation demonstrates high stability and uniformity and holds promise for enhancing the therapeutic outcomes of GEM.


Asunto(s)
Desoxicitidina , Gemcitabina , Nanopartículas , Neoplasias Pancreáticas , Fosfolípidos , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/farmacología , Desoxicitidina/farmacocinética , Desoxicitidina/administración & dosificación , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Nanopartículas/química , Animales , Humanos , Línea Celular Tumoral , Fosfolípidos/química , Ratones , Tamaño de la Partícula , Apoptosis/efectos de los fármacos , Portadores de Fármacos/química , Lípidos/química , Liberación de Fármacos , Masculino , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/farmacocinética , Antimetabolitos Antineoplásicos/química , Antimetabolitos Antineoplásicos/farmacología , Estabilidad de Medicamentos , Ratas , Liposomas
2.
Biomater Adv ; 159: 213822, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38442461

RESUMEN

Certain aggressive cancers, such as triple-negative breast cancer (TNBC), heavily bank on glutamine for their proliferation and survival. In this context, TNBC functions as a "glutamine trap," extracting circulating glutamine at a rate surpassing that of any other organ. Moreover, the overexpression of Alanine, Serine, Cysteine Transporter 2 (ASCT2), a key player in glutamine uptake, further underscores the significance of targeted therapy to enhance TNBC treatment. This led to the exploration of a novel approach involving hydrophobized Pluronic-based mixed micelles achieved through the use of docosahexaenoic acid and stapled with glutamine for displaying inherent ASCT2 targeting ability-a formulation termed LPT G-MM. LPT G-MM exhibited optimal characteristics, including a size of 163.66 ± 10.34 nm, a polydispersity index of 0.237 ± 0.083, and an enhanced drug loading capacity of approximately 15 %. Transmission electron microscopy validated the spherical shape of these micelles. In vitro release studies demonstrated drug release in a sustained manner without the risk of hemolysis. Importantly, LPT G-MM displayed heightened cellular uptake, increased cytotoxicity, a lower IC50 value, elevated reactive oxygen species, induced mitochondrial membrane depolarization, and a greater apoptosis index in TNBC cell lines compared to free LPT. The pharmacokinetic profile of LPT G-MM revealed a substantial rise in half-life (t1/2) by approximately 1.48-fold and an elevation in the area under the curve [AUC(0→∞)] by approximately 1.19-fold. Moreover, there was a significant reduction in the percentage of tumor volume by approximately 7.26-fold, along with decreased serum toxicity markers compared to free LPT. In summary, LPT G-MM demonstrated promising potential in boosting payload capacities and targeting specificity in the context of TNBC treatment.


Asunto(s)
Micelas , Neoplasias de la Mama Triple Negativas , Humanos , Lapatinib/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Glutamina/uso terapéutico , Línea Celular Tumoral , Apoptosis
4.
Biomater Adv ; 156: 213700, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042001

RESUMEN

In this study, we investigated the potential of the sorafenib (SOR) and simvastatin (SIM) combination to induce ferroptosis-mediated cancer therapy. To enhance targeted drug delivery, we encapsulated the SOR + SIM combination within 4-carboxy phenylboronic acid (CPBA) modified PLGA nanoparticles (CPBA-PLGA(SOR + SIM)-NPs). The developed CPBA-PLGA(SOR + SIM)-NPs exhibited a spherical shape with a size of 213.1 ± 10.9 nm, a PDI of 0.22 ± 0.03, and a Z-potential of -22.9 ± 3.2 mV. Notably, these nanoparticles displayed faster drug release at acidic pH compared to physiological pH. In cellular experiments, CPBA-PLGA(SOR + SIM)-NPs demonstrated remarkable improvements, leading to a 2.51, 2.69, and 2.61-fold decrease in IC50 compared to SOR alone, and a 7.50, 16.71, and 5.11-fold decrease in IC50 compared to SIM alone in MDA-MB-231, A549, and HeLa cells, respectively. Furthermore, CPBA-PLGA(SOR + SIM)-NPs triggered a reduction in glutathione (GSH) levels, an increase in malondialdehyde (MDA) levels, and mitochondrial membrane depolarization in all three cell lines. Pharmacokinetic evaluation revealed a 2.50- and 2.63-fold increase in AUC0-∞, as well as a 1.53- and 2.46-fold increase in mean residence time (MRT) for SOR and SIM, respectively, compared to the free drug groups. Notably, the CPBA-PLGA(SOR + SIM)-NPs group exhibited significant reduction in tumor volume, approximately 9.17, 2.45, and 1.63-fold lower than the control, SOR + SIM, and PLGA(SOR + SIM)-NPs groups, respectively. Histological examination and biomarker analysis showed no significant differences compared to the control group, suggesting the biocompatibility of the developed particles for in-vivo applications. Altogether, our findings demonstrate that CPBA-PLGA(SOR + SIM)-NPs hold tremendous potential as an efficient drug delivery system for inducing ferroptosis, providing a promising therapeutic option for cancer treatment.


Asunto(s)
Ferroptosis , Nanopartículas , Humanos , Células HeLa , Sistemas de Liberación de Medicamentos , Simvastatina/farmacología
5.
Int J Pharm ; 648: 123570, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37918494

RESUMEN

Triple negative breast cancer (TNBC) cells resist chemotherapy by hijacking apoptosis. Alternative cell death forms like ferroptosis offer new treatment options. A combined therapy using neratinib (NTB; ferroptosis inducer) and silibinin (SLB; apoptosis inducer) via albumin-based nanocarriers (N-S Alb NPs) was explored to target TNBC. N-S Alb NPs had optimal size (134.26 ± 10.23 nm), PDI (0.224 ± 0.01), and % entrapment efficiency (∼80 % for NTB and ∼87 % for SLB). Transmission electron microscopy confirmed their spherical shape. In vitro release studies showed sustained drug release without hemolysis risk. N-S Alb NPs had higher cellular uptake and cytotoxicity than individual drugs or their mixture. IC50 values for N-S Alb NPs were significantly reduced in MDA-MB-231 (∼2.23-fold) and 4T1 (∼1.85-fold) cell lines and apoptosis index were significantly higher in MDA-MB-231 (∼1.31-fold) and 4T1 cell line (∼1.35-fold) than the physical mixture of both drugs (NTB + SLB). N-S Alb NPs generated more reactive oxygen species (ROS) and caused mitochondrial membrane depolarization, indicating increased cell death. They also exhibited better ferroptosis induction by reducing glutathione (GSH), increasing Fe2+ activity and MDA levels in TNBC cells. Thus, N-S Alb NPs had the ability to promote "mixed" type cell death, showed promise in enhancing the payload capabilities and targeting in TNBC.


Asunto(s)
Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Silibina , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Línea Celular Tumoral , Apoptosis , Albúminas
6.
Int J Biol Macromol ; 253(Pt 8): 127254, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37813219

RESUMEN

Ferroptosis is a non-apoptotic cell death pathway characterized by the accumulation of lipid-peroxy radicals within the affected cells. Here, we investigate the synergistic capacity of sorafenib (SOR) and simvastatin (SIM) to trigger ferroptosis for cancer therapy. For precise in-vivo delivery, SOR + SIM was ratiometrically loaded in bovine serum albumin nanoparticles (BSA-NPs) modified with 4-carboxy phenylboronic acid (CPBA). The developed CPBA-BSA(SOR + SIM)-NPs revealed size of 175.2 ± 12.8 nm, with PDI of 0.22 ± 0.03 and Z-potential of -29.6 ± 4.8 mV. Significantly, CPBA-BSA(SOR + SIM)-NPs exhibited > 2 and > 5-fold reduction in IC50 values compared to individual SOR and SIM treatments respectively, in all tested cell lines. Moreover, CPBA-BSA(SOR + SIM)-NPs treated cells exhibited decrease in glutathione levels, increase in malonaldehyde levels and depolarization of mitochondrial membrane potential (JC-1 assay). Pharmacokinetic analysis revealed enhanced AUC0-∞ and MRT levels for SOR and SIM when administered as CPBA-BSA(SOR + SIM)-NPs compared to free drugs. Crucially, in in-vivo experiments, CPBA-BSA(SOR + SIM)-NPs led to a significant reduction in tumor volume compared to various control groups. Histological and biomarker analyses underscore their biocompatibility for clinical applications. In conclusion, this study highlights the potential of CPBA-BSA(SOR + SIM)-NPs as a promising strategy for inducing ferroptosis in cancer cells, concurrently improving drug delivery and therapeutic efficacy. This approach opens new avenues in cancer treatment.


Asunto(s)
Ferroptosis , Nanopartículas , Sorafenib/farmacología , Albúmina Sérica Bovina , Simvastatina/farmacología , Portadores de Fármacos/farmacocinética , Tamaño de la Partícula
7.
AAPS PharmSciTech ; 24(7): 180, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697085

RESUMEN

Ferroptosis, a pathway dependent on oxygen and iron catalysts, holds promise as a therapeutic approach for cancer treatment due to its manageable regulation, direct control, and immunogenic properties. The sensitivity of cancer cells to ferroptosis induction varies based on their metabolic, genetic, and signalling pathways, prompting the use of combination therapy. In this study, we conducted a screening of drug combinations, including sorafenib (SOR) with simvastatin (SIM), phenethyl isothiocyanate, and trigonelline, in MDA-MB-231, A549, and HeLa cells to assess their cytotoxicity. The SOR-SIM combination exhibited a synergistic effect in MDA-MB-231, A549, and HeLa cells, with calculated CI values of ~ 0.66, 0.53, and 0.59, respectively. Furthermore, co-treatment with ferrostatin-1 resulted in a concentration-dependent increase in the IC50 values. Additionally, SOR + SIM demonstrated a significant reduction in GSH levels, an increase in MDA levels, and mitochondrial membrane depolarization across all three cell lines, indicating their ferroptosis inducing potential. In-vivo studies showed a significant reduction in tumor volume by 3.53-, 2.55-, and 1.47-fold compared to control, SIM, and SOR, respectively. Toxicity assessments revealed insignificant changes in biomarker levels and no observable deformations in isolated organs, except for erythrocyte shrinkage and membrane scrambling effects caused by the SOR + SIM combination. Overall, our findings highlight the potential of the SOR + SIM combination as an effective strategy for cancer treatment, emphasizing the importance of further research in targeted drug delivery systems to ensure its safety.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Detección Precoz del Cáncer , Células HeLa , Sorafenib/farmacología , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico
8.
Int J Biol Macromol ; 252: 126565, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37640185

RESUMEN

This study investigates the impact of charge and chain length of bile salts in the bilosomes on the oral bioavailability of insulin (IN) by examining their uptake via the apical sodium-dependent bile acid transporter (ASBT). Deoxycholic acid bile salt was conjugated with different amino acids to create conjugates with varying charge and chain length, which were then embedded in liposomes. The resulting bilosomes had a particle size <400 nm, a PDI of 0.121 ± 0.03, and an entrapment efficiency of ∼70 %, while maintaining the chemical and conformational integrity of the loaded IN. Bilosomes also provided superior protection in biological fluids without compromising their biophysical attributes. Quantitative studies using the Caco-2 cell line demonstrated that anionic bilosomes were taken up more efficiently through ASBT than cationic bilosomes with 4- and 1.3-fold increase, respectively. Ex-vivo permeability studies corroborated these findings. In-vivo efficacy studies revealed a 1.6-fold increase in the AUC of IN with bilosomes compared to subcutaneous IN. The developed bilosomes were able to reduce blood glucose levels by ∼65 % at 6 h, with a cumulative hypoglycemic value of 35 % and a BAR of ∼30 %. These results suggest that ASBT can be a suitable target for improving the oral bioavailability of bilosomes containing IN.


Asunto(s)
Insulina , Liposomas , Humanos , Disponibilidad Biológica , Células CACO-2 , Liposomas/química , Ácidos y Sales Biliares
9.
Bioconjug Chem ; 34(9): 1528-1552, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37603704

RESUMEN

Most cancer patients rarely benefit from monodrug therapy because of both cancer complexity and tumor environment. One of the main reasons for this failure is insufficient accumulation of the optimal dose at the tumorous site. Our investigation implies a promising strategy to engineer prodrug nanoparticles (NPs) of bortezomib (BTZ) and selenium (Se) using sialic acid (SAL) as a ligand to improve breast cancer therapy. BTZ was conjugated with SAL and HPMA (N-2-hydroxypropyl methacrylamide) to prepare a prodrug conjugate; BTZ-SAL-HPMA (BSAL-HP) and then fabricated into prodrug NPs with Se (Se_BSAL-HP prodrug NPs). The self-assembly of prodrug NPs functionalized with Se showed size (204.13 ± 0.02 nm) and zeta potential (-31.0 ± 0.11 mV) in dynamic light scattering (DLS) experiments and spherical shape in TEM and SEM analysis. Good stability and low pH drug release profile were characterized by Se_BSAL-HP prodrug NPs. The tumor-selective boronate-ester-based prodrug NPs of BTZ in combination with Se endowed a synergistic effect against cancer cells. Compared to prodrug conjugate, Se_BSAL-HP prodrug NPs exhibited higher cell cytotoxicity and enhanced cellular internalization with significant changes in mitochondria membrane potential (MMP). Elevated apoptosis was observed in the (G2/M) phase of the cell cycle for Se_BSAL-HP prodrug NPs (2.7-fold) higher than BTZ. In vivo studies were performed on Sprague-Dawley rats and resulted in positive trends. The increased therapeutic activity of Se_BSAL-HP prodrug NPs inhibited primary tumor growth and showed 43.05 fold decrease in tumor volume than the control in 4T1 tumor bearing mice. The surprising and remarkable outcomes for Se_BSAL-HP prodrug NPs were probably due to the ROS triggering effect of boronate ester and selenium given together.


Asunto(s)
Neoplasias , Profármacos , Selenio , Ratas , Animales , Ratones , Ratas Sprague-Dawley , Profármacos/uso terapéutico , Ácido N-Acetilneuramínico , Bortezomib/farmacología , Bortezomib/uso terapéutico , Ésteres
10.
Adv Drug Deliv Rev ; 199: 114901, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37257756

RESUMEN

Long-acting injectable (LAIs) delivery systems sustain the drug therapeutic action in the body, resulting in reduced dosage regimen, toxicity, and improved patient compliance. Lipid-based depots are biocompatible, provide extended drug release, and improve drug stability, making them suitable for systemic and localized treatment of various chronic ailments, including psychosis, diabetes, hormonal disorders, arthritis, ocular diseases, and cancer. These depots include oil solutions, suspensions, oleogels, liquid crystalline systems, liposomes, solid lipid nanoparticles, nanostructured lipid carriers, phospholipid phase separation gel, vesicular phospholipid gel etc. This review summarizes recent advancements in lipid-based LAIs for delivering small and macromolecules, and their potential in managing chronic diseases. It also provides an overview of the lipid depots available in market or clinical phase, as well as patents for lipid-based LAIs. Furthermore, this review critically discusses the current scenario of using in vitro release methods to establish IVIVC and highlights the challenges involved in developing lipid-based LAIs.


Asunto(s)
Nanoestructuras , Fosfolípidos , Humanos , Preparaciones de Acción Retardada
11.
Drug Deliv Transl Res ; 13(4): 1074-1087, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36528709

RESUMEN

In present investigation, we developed paclitaxel (PTX)-loaded adenosine (ADN)-conjugated PLGA nanoparticles for combating triple-negative breast cancer (TNBC), where ADN acts as a substrate for adenosine receptors (AR) that are overexpressed in TNBC. Using synthesized PLGA-PEG-ADN, PTX-loaded nanoparticles (PTX ADN-PEG-PLGA NPs) were prepared via emulsion diffusion evaporation process that rendered particles of size 135 ± 12 nm, PDI of 0.119 ± 0.03, and entrapment-efficiency of 79.26 ± 2.52%. The NPs showed higher %cumulative release at pH 5.5 over 7.4 with Higuchi release kinetics. The PTX ADN-PEG-PLGA NPs showed ~ 4.87- and 5.22-fold decrease in %hemolysis in comparison to free PTX and Intaxel®, indicating their hemocompatible nature. The ADN modification assisted cytoplasmic internalization of particles via AR-mediated endocytosis that resulted in ~ 3.77- and 3.51-fold reduction in IC50 and showed apoptosis index of 0.93 and 1.18 in MDA-MB-231 and 4T1 cells respectively. The pharmacokinetic profile of ADN-PEG-PLGA NPs revealed higher AUC and t1/2 than Intaxel® and Nanoxel® pharmacodynamic activity showed ~ 18.90-fold lower %tumor burden than control. The kidney and liver function biomarkers showed insignificant change in the levels, when treated with PTX ADN-PEG-PLGA NPs and exhibited no histological alterations in the liver, spleen, and kidney. Overall, the optimized particles were found to be biocompatible with improved anti-TNBC activity.


Asunto(s)
Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Paclitaxel/farmacocinética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Adenosina , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Línea Celular Tumoral , Polietilenglicoles , Portadores de Fármacos/farmacología
12.
Mol Pharm ; 20(1): 524-544, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36306447

RESUMEN

Breast cancer leads to the highest mortality among women resulting in a major clinical burden. Multidrug therapy is more efficient in such patients compared to monodrug therapy. Simultaneous combinatorial or co-delivery garnered significant interest in the past years. Caffeic acid (CFA) (a natural polyphenol) has received growing attention because of its anticarcinogenic and antioxidant potential. Bortezomib (BTZ) is a proteasome inhibitor and may be explored for treating breast cancer. Despite its high anticancer activity, the low water solubility and chemical instability restrict its efficacy against solid tumors. In the present study, we designed and investigated a HP-PCL (N-2-hydroxypropylmethacrylamide-polycaprolactone) polymeric micellar (PMCs) system for the simultaneous delivery of BTZ and CFA in the treatment of breast cancer. The designed BTZ+CFA-HP-PCL PMCs were fabricated, optimized, and characterized for size, zeta potential, surface morphology, and in vitro drug release. Developed nanosized (174.6 ± 0.24 nm) PMCs showed enhanced cellular internalization and cell cytotoxicity in both MCF-7 and MDA-MB-231 cells. ROS (reactive oxygen species) levels were highest in BTZ-HP-PCL PMCs, while CFA-HP-PCL PMCs significantly (p < 0.001) scavenged the ROS generated in 2',7'-dichlorofluorescein diacetate (DCFH-DA) assay. The mitochondrial membrane potential (MMP) assay revealed intense and significant green fluorescence in both types of cancer cells when treated with BTZ-HP-PCL PMCs (p < 0.001) indicating apoptosis or cell death. The pharmacokinetic studies revealed that BTZ-HP-PCL PMCs and BTZ+CFA-HP-PCL PMCs exhibited the highest bioavailability, enhanced plasma half-life, decreased volume of distribution, and lower clearance rate than the pure combination of drugs. In the organ biodistribution studies, the combination of BTZ+CFA showed higher distribution in the spleen and the heart. Overall findings of in vitro studies surprisingly resulted in better therapeutic efficiency of BTZ-HP-PCL PMCs than BTZ+CFA-HP-PCL PMCs. However, the in vivo tumor growth inhibition study performed in tumor-induced mice concluded that the tumor growth was inhibited by both BTZ-HP-PCL PMCs and BTZ+CFA-HP-PCL PMCs (p < 0.0001) more efficiently than pure BTZ and the combination (BTZ+CFA), which may be due to the conversion of boronate ester into boronic acid. Henceforth, the combination of BTZ and CFA provides further indications to be explored in the future to support the hypothesis that BTZ may work with polyphenol (CFA) in the acidic environment of the tumor.


Asunto(s)
Antineoplásicos , Inhibidores de Proteasoma , Femenino , Ratones , Animales , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Micelas , Especies Reactivas de Oxígeno , Distribución Tisular , Quimioterapia Combinada , Leprostáticos/uso terapéutico , Bortezomib/farmacología , Bortezomib/química , Polímeros/química , Línea Celular Tumoral , Antineoplásicos/química
13.
AAPS PharmSciTech ; 23(7): 238, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36002600

RESUMEN

The current study elucidates the improved drug loading of paclitaxel (PTX) in lipid- and D-α-tocopheryl polyethylene glycol succinate (TPGS)-based core-shell-type lipid nanocapsules (PTX-TPGS-LNC) for augmenting the therapeutic efficacy and curbing the toxicity. PTX-TPGS-LNCs were formulated by employing anti-solvent precipitation technique and displayed a particle size of 162.1 ± 4.70 nm and % practical drug loading of 15.04 ± 2.44%. Electron microscopy revealed that PTX-TPGS-LNCs have spherical morphology and the inner core was surrounded by a relatively lighter region, i.e., layer of lipids and TPGS. The nature of loaded PTX inside the PTX-TPGS-LNC was also confirmed using DSC and PXRD analysis. The in vitro release study showed biphasic and sustained release pattern of PTX from PTX-TPGS-LNC and it showed ~ threefold higher PTX uptake in MCF-7 cell line in comparison to free PTX. Moreover, it was apparent from the cytotoxicity assay that PTX-TPGS-LNC displayed higher cytotoxicity in MCF-7 cells and revealed ~ 2.92-fold decrease in IC50 value as against free PTX when incubated for 72 h. The apoptotic index in case of PTX-TPGS-LNC was ~ twofold higher than free PTX. The pharmacokinetic profile of PTX-TPGS-LNC revealed a ~ 3.18-fold increase in t1/2 and a ~ 2.62-fold higher AUC(0→∞) compared to Intaxel®. Finally, treatment with PTX-TPGS-LNC demonstrated significant lowering in the % tumor burden and serum toxicity markers compared to marketed formulation Intaxel®. Thus, the lipid- and TPGS-based core-shell-type LNC with high PTX loading can advance the existing standards of therapy for overshadowing cancer.


Asunto(s)
Nanocápsulas , Paclitaxel , Línea Celular Tumoral , Humanos , Lípidos , Polietilenglicoles , Vitamina E , alfa-Tocoferol
14.
ACS Biomater Sci Eng ; 8(8): 3473-3484, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35896042

RESUMEN

Triple-negative breast cancer (TNBC) belongs to the category of the most destructive forms of breast cancer. Being a highly potent chemotherapeutic agent, paclitaxel (PTX) is extensively utilized in the management of various cancers. Commercially available PTX formulations contain non-targeted drug carriers that result in low antitumor activity because of non-specific tissue distribution. Thus, to resolve this issue, we designed PTX-loaded pH-sensitive liposomes (pH Lipos) in the present investigation and used adenosine (ADN) as a targeting ligand. Further, d-α-tocopheryl polyethylene glycol succinate (TPGS) was incorporated into the liposomes to impart a stealth effect to the system. For the development of these pH Lipos, different conjugates were synthesized (ADN-CHEMS and TPGS-ADN) and further utilized for the preparation of ADN-PEG-pH Lipo and ADN-pH Lipo by a thin-film hydration method. DOPE:HSPC:CHEMS:cholesterol at a molar ratio of 3:3:2:2 was selected for the preparation of pH-Lipo possessing 7.5% w/w drug loading. They showed a particle size below 140 nm, a PDI below 0.205, and a % EE greater than 60%. All of the pH Lipos displayed a biphasic pattern of PTX release at pH 7.4 and 5.5. However, the percent drug release at pH 5.5 was substantially greater because of the pH-sensitive nature of the liposomes. The MDA MB 231 and 4T1 cell lines depicted improvement in the qualitative as well as quantitative cellular uptake of PTX ADN-PEG-pH Lipo with a substantial decrease in the IC50 value. Moreover, a higher apoptotic index was observed with pH Lipo compared to free PTX. PTX ADN-PEG-pH Lipo revealed a 3.98- and 3.41-fold rise in the AUC and t1/2 values of PTX compared to Intaxel, respectively. Overall, characteristic decreases in tumor volume and serum toxicity marker levels were observed, which confirmed the development of an efficient and safe formulation.


Asunto(s)
Paclitaxel , Neoplasias de la Mama Triple Negativas , Adenosina/farmacología , Humanos , Concentración de Iones de Hidrógeno , Liposomas , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
15.
ACS Biomater Sci Eng ; 8(6): 2349-2362, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35522530

RESUMEN

Triple-negative breast cancer (TNBC) cells show improved sensitivity for cisplatin therapy due to their defective DNA damage repair system. However, the clinical utilization of cisplatin is limited by dose-dependent systemic toxicities and chemoresistance. Cisplatin Pt(IV) derivatives having kinetically inert octahedral geometry provide an effective strategy to overcome these limitations. Upon cellular reduction, these derivatives release cisplatin and axial ligands, acting as dual-action prodrugs. Hereby, we have developed three cisplatin(IV) conjugates using distinct bioactive axial moieties (valproate, tocopherol, and chlorambucil), which can synergistically complement cisplatin activity and attack multiple cellular targets. The designed derivatives showcased enhanced antiproliferative activity and improved therapeutic synergism along with a noteworthy cisplatin dose reduction index in a panel of six cancer cells. These Pt(IV) derivatives remarkably improved cellular drug uptake and showed lower dependency on copper transporter 1 (Ctr1) for uptake than cisplatin. The results of enhanced in vitro activity were well corroborated by in vivo efficacy testing in the 4T1 cell-based TNBC model, showcasing ∼2-7-folds higher tumor volume reduction for Pt(IV) derivatives than cisplatin. In addition, the designed derivatives significantly reduced the nephrotoxicity risk involved in cisplatin therapy, indicated by systemic toxicity biomarkers and organ histopathology. The results indicated that cisplatin(IV) derivatives could open new avenues for safer synergistic chemotherapy in TNBC.


Asunto(s)
Antineoplásicos , Profármacos , Neoplasias de la Mama Triple Negativas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Cisplatino/farmacología , Cisplatino/uso terapéutico , Humanos , Profármacos/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
16.
Mol Pharm ; 19(5): 1325-1337, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35437994

RESUMEN

Cisplatin is a platinum (Pt)-based anticancer drug with broad-scale clinical utility. However, due to its hydrophilic nature and high kinetic reactivity, it offers numerous drug delivery challenges. Limitations such as severe systemic toxicities, chemoresistance, extensive cisplatin-plasma protein interaction, and limited cellular drug uptake reduce the therapeutic impact of cisplatin therapy. Cisplatin(IV) prodrug formation can effectively resolve these challenges. The selection of axial ligands could play a key role in determining the fate of cisplatin(IV) prodrugs by modulating the therapeutic and biopharmaceutical outcomes of therapy. Hereby, three cisplatin(IV) derivatives were developed utilizing valproate, tocopherol, and chlorambucil as axial ligands, and their biopharmaceutical performance was compared along with cisplatin. The impact of cisplatin(IV) derivative formation on their kinetic stability, drug-albumin interaction, cytotoxicity profile, cellular uptake pattern, self-assembling behavior, hemotoxicity, and tumor biodistribution pattern was analyzed to establish the correlation between the structural properties of cisplatin(IV) agents and their biopharmaceutical outcomes. The kinetic inertness of the designed cisplatin(IV) compounds helped in minimizing their plasma protein interactions and ensuring their stability in the blood environment. The lipophilicity enhancement due to Pt(IV) prodrug formation critically helped in enhancing the cellular drug uptake and reduced the dependence on transporters for drug uptake. The lipophilicity and activity of axial ligands were the key drivers governing the biopharmaceutical performance of the Pt(IV) derivatives. The properties of the axial ligand, such as its therapeutic activity, chemical backbone, and functional groups present in its structure, were the critical factors determining their plasma protein interaction, cellular uptake, anticancer activity, and self-assembly pattern. Cisplatin(IV) derivative formation further improved the amount of platinum accumulated in tumors after intravenous injection compared to free cisplatin therapy (2.7-5.4 folds increment) and reduced drug-erythrocyte interactions. Overall, the results highlighted the potential of cisplatin(IV) agents in resolving cisplatin drug delivery challenges and denoted the critical role of axial ligand selection in Pt(IV) prodrug designing.


Asunto(s)
Antineoplásicos , Productos Biológicos , Profármacos , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Cisplatino/química , Cisplatino/farmacología , Cisplatino/uso terapéutico , Ligandos , Platino (Metal)/química , Profármacos/química , Distribución Tisular
17.
Carbohydr Polym ; 286: 119305, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35337491

RESUMEN

Chondroitin Sulfate (CS) is an anionic hetero polysaccharide possessing anti-inflammatory, antioxidant, antitumor, anticoagulant and antithrombogenic activities. It is biodegradable and biocompatible in nature. Further, it inherits the ability of active and subcellular targeting due to its affinity for CD 44 receptors and glycosylation enzymes, which are overexpressed on the surface of tumor cells and intracellular organelles respectively. CS is known to degrade in presence of physiological stimuli, the hyaluronidase (HAase) enzyme and reactive oxygen species (ROS), assisting in site specific drug release. Due to these properties, it serve as a promising biomaterial for drug delivery and tissue engineering. In this review, the fundamental theory of CS, CS-based nanocarriers for the delivery of biopharmaceuticals and stimuli sensitive delivery systems such as HAase and ROS responsive nanocarriers for tumor targeted delivery are discussed critically. In addition, the manuscript describes the application of CS-based tissue constructs in tissue engineering and wound healing.


Asunto(s)
Productos Biológicos , Sulfatos de Condroitina , Materiales Biocompatibles/farmacología , Sistemas de Liberación de Medicamentos , Ingeniería de Tejidos
18.
Drug Deliv Transl Res ; 12(3): 562-576, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33774776

RESUMEN

The present investigation demonstrates the development of crosslinked ß-cyclodextrin nanoparticles (ß-CD NPs) for enhancing the therapeutic efficacy of docetaxel (DTX) against breast cancer. Initially, a partial inclusion complex between ß-CD and polypropylene glycol (PPG) was formed to induce self-assembly. This was followed by crosslinking of ß-CDs using epichlorohydrin (EPI) and removal (by solubilization) of PPG to yield uniform ß-CD NPs. The formed particles were used for loading DTX to form DTX ß-CD NPs. The resultant DTX ß-CD NPs exhibited particle size of 223.36 ± 17.73 nm with polydispersity index (PDI) of 0.13 ± 0.09 and showed entrapment efficiency of 54.53 ± 2%. Increased cell uptake (~5-fold), cytotoxicity (~3.3-fold), and apoptosis were observed in MDA-MB-231 cells when treated with DTX ß-CD NPs in comparison to free DTX. Moreover, pharmacokinetic evaluation of DTX ß-CD NPs revealed ~2 and ~5-fold increase in AUC0-∞ and mean residence time (MRT) of DTX when compared to Docepar®. Further, the anti-tumor activity using DMBA-induced cancer model showed that DTX ß-CD NPs were capable of reducing the tumor volume to ~40%, whereas Docepar® was able to reduce tumor volume till ~80%. Finally, the toxicity evaluation of DTX ß-CD NPs revealed no short-term nephrotoxicity and was confirmed by estimating the levels of biomarkers and histopathology of the organs. Thus, the proposed formulation strategy can yield uniformly formed ß-CD NPs which can be effectively utilized for improving the therapeutic efficacy of DTX.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas , beta-Ciclodextrinas , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Docetaxel/farmacología , Portadores de Fármacos/farmacocinética , Femenino , Humanos
19.
Colloids Surf B Biointerfaces ; 204: 111821, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33971612

RESUMEN

Combination therapy, which combines anti-cancer drugs with different oligonucleotides, have shown potential in cancer treatment. However, delivering a hydrophobic anti-cancer drug and a hydrophilic oligonucleotide simultaneously is a herculean task. This study takes advantage of interactions between histidine-lauric acid-based green surfactant and poly(amidoamine) dendrimers to achieve this aim. The green surfactant was synthesized by carbodiimide chemistry and characterized by FTIR, 1H-NMR, and mass spectroscopy. Further, green surfactant-dendrimer aggregates encapsulating DTX and complexing SIRT 1 shRNA i.e., "aggreplexes" were developed and characterized. The term "aggreplexes" signifies complexes which are formed between green-surfactant-dendrimer aggregates and SIRT-1 shRNA via electrostatic interaction. The aggreplexes displayed particle size of 262.33 ± 3.87 nm, PDI of 0.25 and entrapment efficiency of 70.56 %. The TEM images revealed spherical shape of aggreplexes with irregular outer surface and corroborated particle size obtained from zetasizer. The in-vitro release study revealed biphasic release patterns of DTX from aggreplexes and were compatible for intravenous administration. Further, aggreplexes augmented cellular uptake in MDA-MB-231 cells by ∼1.87-fold compared to free DTX. Also, EGFP expression revealed significantly higher transfection of aggreplexes compared to naked shRNA and Superfect™ complexes. Further, aggreplexes showed higher cytotoxicity in MDA-MB-231 cells and ∼4.16-fold reduction in IC50 value compared to free DTX. Finally, apoptosis-index observed in case of aggreplexes was ∼3.57-fold higher than free DTX. These novel aggreplexes showed increased drug loading capacity and superior gene transfection potential. Thus, they open new avenues for co-delivery of hydrophobic anti-cancer drugs and hydrophilic therapeutic genes for improving current standards of cancer therapy.


Asunto(s)
Antineoplásicos , Dendrímeros , Nanopartículas , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Docetaxel , Portadores de Fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Tamaño de la Partícula , Tensoactivos
20.
Mater Sci Eng C Mater Biol Appl ; 120: 111664, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33545830

RESUMEN

Combining the bio-therapeutics with chemotherapeutic drugs can assist in augmenting the therapeutic standards by increasing the efficacy and decreasing the toxicity. Hence, in the present investigation Docetaxel (DTX) loaded pH-sensitive SIRT1 shRNA complexed lipoplex (DTX-lipoplex) were developed and explored for their improved breast cancer potential. The DTX-lipoplex were prepared by solvent evaporation and rehydration method and were evaluated for various quality attributes (particle size, % entrapment efficiency, hemotoxicity, DNA stability efficiency etc.), in vitro drug release, cell culture assays, antitumor efficacy and in vivo toxicity. The DTX-lipoplex exhibited a size of ~200 nm and zeta-potential of ~20 mV with ~70% encapsulation. Through systematic in vitro and in vivo examinations, DTX-lipoplex showed ~3 fold higher DTX titre within the tumor cells thereby significantly reducing the tumor burden (~78%) when compared to the marketed non pH sensitive lipid transfection agent and clinical counterpart i.e. Taxotere®. Thus, to conclude it can be said that co-delivering DTX and SIRT1 shRNA in a single tumor-specific nano-platform can improve the therapeutic potential of current therapy.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Docetaxel/farmacología , Portadores de Fármacos/uso terapéutico , Humanos , Concentración de Iones de Hidrógeno , Liposomas , Tamaño de la Partícula , ARN Interferente Pequeño , Sirtuina 1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...