Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Neuropathol Commun ; 12(1): 25, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336940

RESUMEN

Alzheimer's disease (AD), characterized by the deposition of amyloid-ß (Aß) in senile plaques and neurofibrillary tangles of phosphorylated tau (pTau), is increasingly recognized as a complex disease with multiple pathologies. AD sometimes pathologically overlaps with age-related tauopathies such as four repeat (4R)-tau predominant argyrophilic grain disease (AGD). While AGD is often detected with AD pathology, the contribution of APOE4 to AGD risk is not clear despite its robust effects on AD pathogenesis. Specifically, how APOE genotype influences Aß and tau pathology in co-occurring AGD and AD has not been fully understood. Using postmortem brain samples (N = 353) from a neuropathologically defined cohort comprising of cases with AD and/or AGD pathology built to best represent different APOE genotypes, we measured the amounts of major AD-related molecules, including Aß40, Aß42, apolipoprotein E (apoE), total tau (tTau), and pTau181, in the temporal cortex. The presence of tau lesions characteristic of AD (AD-tau) was correlated with cognitive decline based on Mini-Mental State Examination (MMSE) scores, while the presence of AGD tau lesions (AGD-tau) was not. Interestingly, while APOE4 increased the risk of AD-tau pathology, it did not increase the risk of AGD-tau pathology. Although APOE4 was significantly associated with higher levels of insoluble Aß40, Aß42, apoE, and pTau181, the APOE4 effect was no longer detected in the presence of AGD-tau. We also found that co-occurrence of AGD with AD was associated with lower insoluble Aß42 and pTau181 levels. Overall, our findings suggest that different patterns of Aß, tau, and apoE accumulation mediate the development of AD-tau and AGD-tau pathology, which is affected by APOE genotype.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteínas E , Tauopatías , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Amiloide , Péptidos beta-Amiloides , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Proteínas tau , Tauopatías/patología
2.
Ann Neurol ; 95(2): 299-313, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37897306

RESUMEN

OBJECTIVE: This study was undertaken to apply established and emerging cerebrospinal fluid (CSF) biomarkers to improve diagnostic accuracy in patients with rapidly progressive dementia (RPD). Overlap in clinical presentation and results of diagnostic tests confounds etiologic diagnosis in patients with RPD. Objective measures are needed to improve diagnostic accuracy and to recognize patients with potentially treatment-responsive causes of RPD. METHODS: Biomarkers of Alzheimer disease neuropathology (amyloid-ß 42/40 ratio, phosphorylated tau [p-tau181, p-tau231]), neuroaxonal/neuronal injury (neurofilament light chain [NfL], visinin-like protein-1 [VILIP-1], total tau), neuroinflammation (chitinase-3-like protein [YKL-40], soluble triggering receptor expressed on myeloid cells 2 [sTREM2], glial fibrillary acidic protein [GFAP], monocyte chemoattractant protein-1 [MCP-1]), and synaptic dysfunction (synaptosomal-associated protein 25kDa, neurogranin) were measured in CSF obtained at presentation from 78 prospectively accrued patients with RPD due to neurodegenerative, vascular, and autoimmune/inflammatory diseases; 35 age- and sex-matched patients with typically progressive neurodegenerative disease; and 72 cognitively normal controls. Biomarker levels were compared across etiologic diagnoses, by potential treatment responsiveness, and between patients with typical and rapidly progressive presentations of neurodegenerative disease. RESULTS: Alzheimer disease biomarkers were associated with neurodegenerative causes of RPD. High NfL, sTREM2, and YKL-40 and low VILIP-1 identified patients with autoimmune/inflammatory diseases. MCP-1 levels were highest in patients with vascular causes of RPD. A multivariate model including GFAP, MCP-1, p-tau181, and sTREM2 identified the 44 patients with treatment-responsive causes of RPD with 89% accuracy. Minimal differences were observed between typical and rapidly progressive presentations of neurodegenerative disease. INTERPRETATION: Selected CSF biomarkers at presentation were associated with etiologic diagnoses and treatment responsiveness in patients with heterogeneous causes of RPD. The ability of cross-sectional biomarkers to inform upon mechanisms that drive rapidly progressive neurodegenerative disease is less clear. ANN NEUROL 2024;95:299-313.


Asunto(s)
Enfermedad de Alzheimer , Demencia , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/líquido cefalorraquídeo , Proteína 1 Similar a Quitinasa-3 , Proteínas tau/líquido cefalorraquídeo , Estudios Transversales , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo
4.
Mol Neurodegener ; 18(1): 8, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36721205

RESUMEN

BACKGROUND: The rare p.H157Y variant of TREM2 (Triggering Receptor Expressed on Myeloid Cells 2) was found to increase Alzheimer's disease (AD) risk. This mutation is located at the cleavage site of TREM2 extracellular domain. Ectopic expression of TREM2-H157Y in HEK293 cells resulted in increased TREM2 shedding. However, the physiological outcomes of the TREM2 H157Y mutation remain unknown in the absence and presence of AD related pathologies. METHODS: We generated a novel Trem2 H157Y knock-in mouse model through CRISPR/Cas9 technology and investigated the effects of Trem2 H157Y on TREM2 proteolytic processing, synaptic function, and AD-related amyloid pathologies by conducting biochemical assays, targeted mass spectrometry analysis of TREM2, hippocampal electrophysiology, immunofluorescent staining, in vivo micro-dialysis, and cortical bulk RNA sequencing. RESULTS: Consistent with previous in vitro findings, Trem2 H157Y increases TREM2 shedding with elevated soluble TREM2 levels in the brain and serum. Moreover, Trem2 H157Y enhances synaptic plasticity without affecting microglial density and morphology, or TREM2 signaling. In the presence of amyloid pathology, Trem2 H157Y accelerates amyloid-ß (Aß) clearance and reduces amyloid burden, dystrophic neurites, and gliosis in two independent founder lines. Targeted mass spectrometry analysis of TREM2 revealed higher ratios of soluble to full-length TREM2-H157Y compared to wild-type TREM2, indicating that the H157Y mutation promotes TREM2 shedding in the presence of Aß. TREM2 signaling was further found reduced in Trem2 H157Y homozygous mice. Transcriptomic profiling revealed that Trem2 H157Y downregulates neuroinflammation-related genes and an immune module correlated with the amyloid pathology. CONCLUSION: Taken together, our findings suggest beneficial effects of the Trem2 H157Y mutation in synaptic function and in mitigating amyloid pathology. Considering the genetic association of TREM2 p.H157Y with AD risk, we speculate TREM2 H157Y in humans might increase AD risk through an amyloid-independent pathway, such as its effects on tauopathy and neurodegeneration which merit further investigation.


Asunto(s)
Péptidos beta-Amiloides , Proteínas Amiloidogénicas , Humanos , Animales , Ratones , Células HEK293 , Encéfalo , Modelos Animales de Enfermedad , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética
5.
Nat Neurosci ; 25(8): 1020-1033, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35915180

RESUMEN

The ε4 allele of the apolipoprotein E (APOE) gene, a genetic risk factor for Alzheimer's disease, is abundantly expressed in both the brain and periphery. Here, we present evidence that peripheral apoE isoforms, separated from those in the brain by the blood-brain barrier, differentially impact Alzheimer's disease pathogenesis and cognition. To evaluate the function of peripheral apoE, we developed conditional mouse models expressing human APOE3 or APOE4 in the liver with no detectable apoE in the brain. Liver-expressed apoE4 compromised synaptic plasticity and cognition by impairing cerebrovascular functions. Plasma proteome profiling revealed apoE isoform-dependent functional pathways highlighting cell adhesion, lipoprotein metabolism and complement activation. ApoE3 plasma from young mice improved cognition and reduced vessel-associated gliosis when transfused into aged mice, whereas apoE4 compromised the beneficial effects of young plasma. A human induced pluripotent stem cell-derived endothelial cell model recapitulated the plasma apoE isoform-specific effect on endothelial integrity, further supporting a vascular-related mechanism. Upon breeding with amyloid model mice, liver-expressed apoE4 exacerbated brain amyloid pathology, whereas apoE3 reduced it. Our findings demonstrate pathogenic effects of peripheral apoE4, providing a strong rationale for targeting peripheral apoE to treat Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Enfermedad de Alzheimer/metabolismo , Animales , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Encéfalo/metabolismo , Cognición , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Transgénicos , Isoformas de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...