Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biosci ; 38(4): 703-12, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24287649

RESUMEN

The actinorhizal bacterium Frankia expresses nitrogenase and can therefore convert molecular nitrogen into ammonia and the by-product hydrogen. However, nitrogenase is inhibited by oxygen. Consequently, Frankia and its actinorhizal hosts have developed various mechanisms for excluding oxygen from their nitrogen-containing compartments. These include the expression of oxygen-scavenging uptake hydrogenases, the formation of hopanoid-rich vesicles, enclosed by multi-layered hopanoid structures, the lignification of hyphal cell walls, and the production of haemoglobins in the symbiotic nodule. In this work, we analysed the expression and structure of the so-called uptake hydrogenase (Hup), which catalyses the in vivo dissociation of hydrogen to recycle the energy locked up in this 'waste' product. Two uptake hydrogenase syntons have been identified in Frankia: synton 1 is expressed under freeliving conditions while synton 2 is expressed during symbiosis. We used qPCR to determine synton 1 hup gene expression in two Frankia strains under aerobic and anaerobic conditions. We also predicted the 3D structures of the Hup protein subunits based on multiple sequence alignments and remote homology modelling. Finally, we performed BLAST searches of genome and protein databases to identify genes that may contribute to the protection of nitrogenase against oxygen in the two Frankia strains. Our results show that in Frankia strain ACN14a, the expression patterns of the large (HupL1) and small (HupS1) uptake hydrogenase subunits depend on the abundance of oxygen in the external environment. Structural models of the membrane-bound hydrogenase subunits of ACN14a showed that both subunits resemble the structures of known [NiFe] hydrogenases (Volbeda et al. 1995), but contain fewer cysteine residues than the uptake hydrogenase of the Frankia DC12 and Eu1c strains. Moreover, we show that all of the investigated Frankia strains have two squalene hopane cyclase genes (shc1 and shc2). The only exceptions were CcI3 and the symbiont of Datisca glomerata, which possess shc1 but not shc2. Four truncated haemoglobin genes were identified in Frankia ACN14a and Eu1f, three in CcI3, two in EANpec1 and one in the Datisca glomerata symbiont (Dg).


Asunto(s)
Proteínas Bacterianas/genética , Frankia/genética , Regulación Bacteriana de la Expresión Génica , Hidrogenasas/genética , Nitrogenasa/genética , Subunidades de Proteína/genética , Proteínas Bacterianas/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Frankia/enzimología , Hemoglobinas/genética , Hemoglobinas/metabolismo , Hidrógeno/metabolismo , Hidrogenasas/química , Hidrogenasas/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Fijación del Nitrógeno/fisiología , Nitrogenasa/metabolismo , Estrés Oxidativo , Oxígeno/metabolismo , Plantas/microbiología , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/fisiología , Simbiosis
2.
Plant Biol (Stuttg) ; 13(4): 611-9, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21668602

RESUMEN

Rice (Oryza sativa L.) can successfully germinate and grow even when flooded. Rice varieties possessing the submergence 1A (Sub1A) gene display a distinct flooding-tolerant phenotype, associated with lower carbohydrate consumption and restriction of the fast-elongation phenotype typical of flooding-intolerant rice varieties. Calcineurin B-like interacting protein kinase 15 (CIPK15) was recently indicated as a key regulator of α-amylases under oxygen deprivation, linked to both rice germination and flooding tolerance in adult plants. It is still unknown whether the Sub1A- and CIPK15-mediated pathways act as complementary processes for rice survival under O(2) deprivation. In adult plants Sub1A and CIPK15 may perhaps play an antagonistic role in terms of carbohydrate consumption, with Sub1A acting as a starch degradation repressor and CIPK15 as an activator. In this study, we analysed sugar metabolism in the stem of rice plants under water submergence by selecting cultivars with different traits associated with flooding survival. The relation between the Sub1A and the CIPK15 pathways was investigated. The results show that under O(2) deprivation, the CIPK15 pathway is repressed in the tolerant, Sub1A-containing, FR13A variety. CIPK15 is likely to play a role in the up-regulation of Ramy3D in flooding-intolerant rice varieties that display fast elongation under flooding and that do not possess Sub1A.


Asunto(s)
Adaptación Fisiológica , Inundaciones , Oryza/metabolismo , Oxígeno/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico , alfa-Amilasas/biosíntesis , Calcineurina/metabolismo , Metabolismo de los Hidratos de Carbono , Grano Comestible , Genes de Plantas , Germinación , Oryza/crecimiento & desarrollo , Fenotipo , Tallos de la Planta , Proteínas Quinasas/metabolismo , Transducción de Señal/genética , Especificidad de la Especie , Almidón/metabolismo , Regulación hacia Arriba , Agua
3.
Ann Bot ; 107(8): 1335-43, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21489969

RESUMEN

BACKGROUND AND AIMS: Rice is one of the few crops able to withstand periods of partial or even complete submergence. One of the adaptive traits of rice is the constitutive presence and further development of aerenchyma which enables oxygen to be transported to submerged organs. The development of lysigenous aerenchyma is promoted by ethylene accumulating within the submerged plant tissues, although other signalling mechanisms may also co-exist. In this study, aerenchyma development was analysed in two rice (Oryza sativa) varieties, 'FR13A' and 'Arborio Precoce', which show opposite traits in flooding response in terms of internode elongation and survival. METHODS: The growth and survival of rice varieties under submergence was investigated in the leaf sheath of 'FR13A' and 'Arborio Precoce'. The possible involvement of ethylene and reactive oxygen species (ROS) was evaluated in relation to aerenchyma formation. Cell viability and DNA fragmentation were determined by FDA/FM4-64 staining and TUNEL assay, respectively. Ethylene production was monitored by gas chromatography and by analysing ACO gene expression. ROS production was measured by using Amplex Red assay kit and the fluorescent dye DCFH(2)-DA. The expression of APX1 was also evaluated. AVG and DPI solutions were used to test the effect of inhibiting ethylene biosynthesis and ROS production, respectively. KEY RESULTS: Both the varieties displayed constitutive lysigenous aerenchyma formation, which was further enhanced when submerged. 'Arborio Precoce', which is characterized by fast elongation when submerged, showed active ethylene biosynthetic machinery associated with increased aerenchymatous areas. 'FR13A', which harbours the Sub1A gene that limits growth during oxygen deprivation, did not show any increase in ethylene production after submersion but still displayed increased aerenchyma. Hydrogen peroxide levels increased in 'FR13A' but not in 'Arborio Precoce'. CONCLUSIONS: While ethylene controls aerenchyma formation in the fast-elongating 'Arborio Precoce' variety, in 'FR13A' ROS accumulation plays an important role.


Asunto(s)
Adaptación Fisiológica/fisiología , Etilenos/metabolismo , Oryza/fisiología , Especies Reactivas de Oxígeno/metabolismo , Agua/fisiología , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Ascorbato Peroxidasas/genética , Supervivencia Celular , Fragmentación del ADN , ADN de Plantas/genética , Etilenos/biosíntesis , Regulación de la Expresión Génica de las Plantas , Genotipo , Peróxido de Hidrógeno/metabolismo , Inmersión , Oryza/enzimología , Oryza/genética , Oryza/crecimiento & desarrollo , Hojas de la Planta/citología , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/fisiología , ARN de Planta/genética , Plantones/fisiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...