Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biosci ; 38(4): 703-12, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24287649

RESUMEN

The actinorhizal bacterium Frankia expresses nitrogenase and can therefore convert molecular nitrogen into ammonia and the by-product hydrogen. However, nitrogenase is inhibited by oxygen. Consequently, Frankia and its actinorhizal hosts have developed various mechanisms for excluding oxygen from their nitrogen-containing compartments. These include the expression of oxygen-scavenging uptake hydrogenases, the formation of hopanoid-rich vesicles, enclosed by multi-layered hopanoid structures, the lignification of hyphal cell walls, and the production of haemoglobins in the symbiotic nodule. In this work, we analysed the expression and structure of the so-called uptake hydrogenase (Hup), which catalyses the in vivo dissociation of hydrogen to recycle the energy locked up in this 'waste' product. Two uptake hydrogenase syntons have been identified in Frankia: synton 1 is expressed under freeliving conditions while synton 2 is expressed during symbiosis. We used qPCR to determine synton 1 hup gene expression in two Frankia strains under aerobic and anaerobic conditions. We also predicted the 3D structures of the Hup protein subunits based on multiple sequence alignments and remote homology modelling. Finally, we performed BLAST searches of genome and protein databases to identify genes that may contribute to the protection of nitrogenase against oxygen in the two Frankia strains. Our results show that in Frankia strain ACN14a, the expression patterns of the large (HupL1) and small (HupS1) uptake hydrogenase subunits depend on the abundance of oxygen in the external environment. Structural models of the membrane-bound hydrogenase subunits of ACN14a showed that both subunits resemble the structures of known [NiFe] hydrogenases (Volbeda et al. 1995), but contain fewer cysteine residues than the uptake hydrogenase of the Frankia DC12 and Eu1c strains. Moreover, we show that all of the investigated Frankia strains have two squalene hopane cyclase genes (shc1 and shc2). The only exceptions were CcI3 and the symbiont of Datisca glomerata, which possess shc1 but not shc2. Four truncated haemoglobin genes were identified in Frankia ACN14a and Eu1f, three in CcI3, two in EANpec1 and one in the Datisca glomerata symbiont (Dg).


Asunto(s)
Proteínas Bacterianas/genética , Frankia/genética , Regulación Bacteriana de la Expresión Génica , Hidrogenasas/genética , Nitrogenasa/genética , Subunidades de Proteína/genética , Proteínas Bacterianas/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Frankia/enzimología , Hemoglobinas/genética , Hemoglobinas/metabolismo , Hidrógeno/metabolismo , Hidrogenasas/química , Hidrogenasas/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Fijación del Nitrógeno/fisiología , Nitrogenasa/metabolismo , Estrés Oxidativo , Oxígeno/metabolismo , Plantas/microbiología , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/fisiología , Simbiosis
2.
Plant Biol (Stuttg) ; 11(4): 561-73, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19538394

RESUMEN

Rice (Oryza sativa L.) seeds can germinate under anoxia and can show coleoptile elongation. The anoxic coleoptile is usually longer than aerobic coleoptiles. Although several hypotheses have been proposed to explain the ability of rice to elongate coleoptiles under anoxia, conclusive experimental evidence explaining this physiological trait is lacking. In order to investigate whether metabolic and molecular markers correlate with anoxic coleoptile length, we screened 141 Italian and 23 Sri Lankan rice cultivars for their ability to elongate coleoptiles under anoxia. Differences in anoxic coleoptile length were used to evaluate whether a correlation exists between coleoptile length and biochemical and molecular parameters. The expression of genes coding for glycolytic and fermentative enzymes showed a very low correlation with anoxic coleoptile length. Although differences were found in carbohydrate content between the varieties tested, this parameter also does not appear to be critical in terms of coleoptile elongation. Efficient ethanol fermentation does, however, correlate well with the elongation of coleoptiles under anoxic conditions.


Asunto(s)
Metabolismo de los Hidratos de Carbono/fisiología , Cotiledón/metabolismo , Cotiledón/fisiología , Fermentación/fisiología , Oryza/metabolismo , Oryza/fisiología , Anaerobiosis/fisiología , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA