Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Int J Radiat Oncol Biol Phys ; 117(3): 533-550, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37244628

RESUMEN

PURPOSE: The ongoing lack of data standardization severely undermines the potential for automated learning from the vast amount of information routinely archived in electronic health records (EHRs), radiation oncology information systems, treatment planning systems, and other cancer care and outcomes databases. We sought to create a standardized ontology for clinical data, social determinants of health, and other radiation oncology concepts and interrelationships. METHODS AND MATERIALS: The American Association of Physicists in Medicine's Big Data Science Committee was initiated in July 2019 to explore common ground from the stakeholders' collective experience of issues that typically compromise the formation of large inter- and intra-institutional databases from EHRs. The Big Data Science Committee adopted an iterative, cyclical approach to engaging stakeholders beyond its membership to optimize the integration of diverse perspectives from the community. RESULTS: We developed the Operational Ontology for Oncology (O3), which identified 42 key elements, 359 attributes, 144 value sets, and 155 relationships ranked in relative importance of clinical significance, likelihood of availability in EHRs, and the ability to modify routine clinical processes to permit aggregation. Recommendations are provided for best use and development of the O3 to 4 constituencies: device manufacturers, centers of clinical care, researchers, and professional societies. CONCLUSIONS: O3 is designed to extend and interoperate with existing global infrastructure and data science standards. The implementation of these recommendations will lower the barriers for aggregation of information that could be used to create large, representative, findable, accessible, interoperable, and reusable data sets to support the scientific objectives of grant programs. The construction of comprehensive "real-world" data sets and application of advanced analytical techniques, including artificial intelligence, holds the potential to revolutionize patient management and improve outcomes by leveraging increased access to information derived from larger, more representative data sets.


Asunto(s)
Neoplasias , Oncología por Radiación , Humanos , Inteligencia Artificial , Consenso , Neoplasias/radioterapia , Informática
3.
Pract Radiat Oncol ; 13(5): 413-428, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37075838

RESUMEN

PURPOSE: For patients with lung cancer, it is critical to provide evidence-based radiation therapy to ensure high-quality care. The US Department of Veterans Affairs (VA) National Radiation Oncology Program partnered with the American Society for Radiation Oncology (ASTRO) as part of the VA Radiation Oncology Quality Surveillance to develop lung cancer quality metrics and assess quality of care as a pilot program in 2016. This article presents recently updated consensus quality measures and dose-volume histogram (DVH) constraints. METHODS AND MATERIALS: A series of measures and performance standards were reviewed and developed by a Blue-Ribbon Panel of lung cancer experts in conjunction with ASTRO in 2022. As part of this initiative, quality, surveillance, and aspirational metrics were developed for (1) initial consultation and workup; (2) simulation, treatment planning, and treatment delivery; and (3) follow-up. The DVH metrics for target and organ-at-risk treatment planning dose constraints were also reviewed and defined. RESULTS: Altogether, a total of 19 lung cancer quality metrics were developed. There were 121 DVH constraints developed for various fractionation regimens, including ultrahypofractionated (1, 3, 4, or 5 fractions), hypofractionated (10 and 15 fractionations), and conventional fractionation (30-35 fractions). CONCLUSIONS: The devised measures will be implemented for quality surveillance for veterans both inside and outside of the VA system and will provide a resource for lung cancer-specific quality metrics. The recommended DVH constraints serve as a unique, comprehensive resource for evidence- and expert consensus-based constraints across multiple fractionation schemas.


Asunto(s)
Neoplasias Pulmonares , Oncología por Radiación , Veteranos , Humanos , Estados Unidos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamiento farmacológico , Oncología por Radiación/métodos , Consenso , Indicadores de Calidad de la Atención de Salud
4.
Pract Radiat Oncol ; 13(2): e149-e165, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36522277

RESUMEN

PURPOSE: There are no agreed upon measures to comprehensively determine the quality of radiation oncology (RO) care delivered for prostate cancer. Consequently, it is difficult to assess the implementation of scientific advances and adherence to best practices in routine clinical practice. To address this need, the US Department of Veterans Affairs (VA) National Radiation Oncology Program established the VA Radiation Oncology Quality Surveillance (VA ROQS) Program to develop clinical quality measures to assess the quality of RO care delivered to Veterans with cancer. This article reports the prostate cancer consensus measures. METHODS AND MATERIALS: The VA ROQS Program contracted with the American Society for Radiation Oncology to commission a Blue Ribbon Panel of prostate cancer experts to develop a set of evidence-based measures and performance expectations. From February to June 2021, the panel developed quality, aspirational, and surveillance measures for (1) initial consultation and workup, (2) simulation, treatment planning, and delivery, and (3) follow-up. Dose-volume histogram (DVH) constraints to be used as quality measures for definitive and post-prostatectomy radiation therapy were selected. The panel also identified the optimal Common Terminology Criteria for Adverse Events, version 5.0 (CTCAE V5.0), toxicity terms to assess in follow-up. RESULTS: Eighteen prostate-specific measures were developed (13 quality, 2 aspirational, and 3 surveillance). DVH metrics tailored to conventional, moderately hypofractionated, and ultrahypofractionated regimens were identified. Decision trees to determine performance for each measure were developed. Eighteen CTCAE V5.0 terms were selected in the sexual, urinary, and gastrointestinal domains as highest priority for assessment during follow-up. CONCLUSIONS: This set of measures and DVH constraints serves as a tool for assessing the comprehensive quality of RO care for prostate cancer. These measures will be used for ongoing quality surveillance and improvement among veterans receiving care across VA and community sites. These measures can also be applied to clinical settings outside of those serving veterans.


Asunto(s)
Neoplasias de la Próstata , Oncología por Radiación , Veteranos , Masculino , Humanos , Estados Unidos , Indicadores de Calidad de la Atención de Salud , Consenso , Neoplasias de la Próstata/radioterapia
5.
Pract Radiat Oncol ; 13(3): 217-230, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36115498

RESUMEN

PURPOSE: Using evidence-based radiation therapy to direct care for patients with breast cancer is critical to standardize practice, improve safety, and optimize outcomes. To address this need, the Veterans Affairs (VA) National Radiation Oncology Program (NROP) established the VA Radiation Oncology Quality Surveillance Program to develop clinical quality measures (QMs). The VA NROP contracted with the American Society for Radiation Oncology to commission 5 Blue Ribbon Panels for breast, lung, prostate, rectal, and head and neck cancers. METHODS AND MATERIALS: The Breast Cancer Blue Ribbon Panel experts worked collaboratively with the NROP to develop consensus QMs for use throughout the VA system, establishing a set of QMs for patients in several areas, including consultation and work-up; simulation, treatment planning, and treatment; and follow-up care. As part of this initiative, consensus dose-volume histogram (DVH) constraints were outlined. RESULTS: In total, 36 QMs were established. Herein, we review the process used to develop QMs and final consensus QMs pertaining to all aspects of radiation patient care, as well as DVH constraints. CONCLUSIONS: The QMs and expert consensus DVH constraints are intended for ongoing quality surveillance within the VA system and centers providing community care for Veterans. They are also available for use by greater non-VA community measures of quality care for patients with breast cancer receiving radiation.


Asunto(s)
Neoplasias de la Mama , Oncología por Radiación , Veteranos , Masculino , Humanos , Estados Unidos , Neoplasias de la Mama/radioterapia , Indicadores de Calidad de la Atención de Salud , Oncología por Radiación/métodos , Consenso
6.
Pract Radiat Oncol ; 12(5): 424-436, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35907764

RESUMEN

PURPOSE: Ensuring high quality, evidence-based radiation therapy for patients with cancer is of the upmost importance. To address this need, the Veterans Affairs (VA) Radiation Oncology Program partnered with the American Society for Radiation Oncology and established the VA Radiation Oncology Quality Surveillance program. As part of this ongoing effort to provide the highest quality of care for patients with rectal cancer, a blue-ribbon panel comprised of rectal cancer experts was formed to develop clinical quality measures. METHODS AND MATERIALS: The Rectal Cancer Blue Ribbon panel developed quality, surveillance, and aspirational measures for (a) initial consultation and workup, (b) simulation, treatment planning, and treatment, and (c) follow-up. Twenty-two rectal cancer specific measures were developed (19 quality, 1 aspirational, and 2 surveillance). In addition, dose-volume histogram constraints for conventional and hypofractionated radiation therapy were created. CONCLUSIONS: The quality measures and dose-volume histogram for rectal cancer serves as a guideline to assess the quality of care for patients with rectal cancer receiving radiation therapy. These quality measures will be used for quality surveillance for veterans receiving care both inside and outside the VA system to improve the quality of care for these patients.


Asunto(s)
Oncología por Radiación , Neoplasias del Recto , Veteranos , Consenso , Humanos , Indicadores de Calidad de la Atención de Salud , Neoplasias del Recto/radioterapia , Estados Unidos
7.
Pract Radiat Oncol ; 12(5): 409-423, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35667551

RESUMEN

PURPOSE: Safeguarding high-quality care using evidence-based radiation therapy for patients with head and neck cancer is crucial to improving oncologic outcomes, including survival and quality of life. METHODS AND MATERIALS: The Veterans Administration (VA) National Radiation Oncology Program established the VA Radiation Oncology Quality Surveillance Program (VAROQS) to develop clinical quality measures (QM) in head and neck cancer. As part of the development of QM, the VA commissioned, along with the American Society for Radiation Oncology, a blue-ribbon panel comprising experts in head and neck cancer, to develop QM. RESULTS: We describe the methods used to develop QM and the final consensus QM, as well as aspirational and surveillance QM, which capture all aspects of the continuum of patient care from initial patient work-up, radiation treatment planning and delivery, and follow-up care, as well as dose volume constraints. CONCLUSION: These QM are intended for use as part of ongoing quality surveillance for veterans receiving radiation therapy throughout the VA as well as outside the VA. They may also be used by the non-VA community as a basic measure of quality care for head and neck cancer patients receiving radiation.


Asunto(s)
Neoplasias de Cabeza y Cuello , Neoplasias Laríngeas , Oncología por Radiación , Veteranos , Consenso , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Indicadores de Calidad de la Atención de Salud , Calidad de Vida , Estados Unidos
8.
Pract Radiat Oncol ; 12(6): 468-474, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35690354

RESUMEN

PURPOSE: Ensuring high quality, evidence-based radiation therapy for patients is of the upmost importance. As a part of the largest integrated health system in America, the Department of Veterans Affairs National Radiation Oncology Program (VA-NROP) established a quality surveillance initiative to address the challenge and necessity of providing the highest quality of care for veterans treated for cancer. METHODS AND MATERIALS: As part of this initiative, the VA-NROP contracted with the American Society for Radiation Oncology to commission 5 Blue Ribbon Panels for lung, prostate, rectal, breast, and head and neck cancers experts. This group worked collaboratively with the VA-NROP to develop consensus quality measures. In addition to the site-specific measures, an additional Blue Ribbon Panel comprised of the chairs and other members of the disease sites was formed to create 18 harmonized quality measures for all 5 sites (13 quality, 4 surveillance, and 1 aspirational). CONCLUSIONS: The VA-NROP and American Society for Radiation Oncology collaboration have created quality measures spanning 5 disease sites to help improve patient outcomes. These will be used for the ongoing quality surveillance of veterans receiving radiation therapy through the VA and its community partners.


Asunto(s)
Neoplasias , Oncología por Radiación , Veteranos , Masculino , Estados Unidos , Humanos , United States Department of Veterans Affairs , Indicadores de Calidad de la Atención de Salud , Neoplasias/radioterapia
9.
Pract Radiat Oncol ; 11(2): 101-107, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33279669

RESUMEN

PURPOSE: In 2014 the American Society for Radiation Oncology's Accreditation Program for Excellence (APEx) was created in response to the Target Safely campaign. APEx is a powerful tool to measure and drive quality improvement in radiation oncology practices. METHODS AND MATERIALS: A task group from the American Society for Radiation Oncology's Practice Accreditation Committee was formed to provide an overview of the APEx accreditation program including analysis from specific program data. RESULTS: Through initiatives encouraged by the APEx program, participants are able to evaluate teamwork and effectiveness, implement documented procedures aimed at improving quality and safety, and establish quality management at the practice. The program's Self-Assessment measures performance with program requirements and indicates where compliance lacks standardization. Methods to address these deficiencies form part of on-going quality improvement. These quality outcomes promote the delivery of safe, high-quality care. CONCLUSION: The accreditation process through APEx is a commitment to an ongoing safety culture. Any worthwhile accreditation program should provide a meaningful assessment of practice operations, supply the tools to identify deficiencies and provide the opportunity to showcase growth and development. A commitment to completing APEx is a commitment to excellence for patients and all those who care for them.


Asunto(s)
Mejoramiento de la Calidad , Acreditación , Humanos , Calidad de la Atención de Salud , Oncología por Radiación , Estados Unidos
10.
Pract Radiat Oncol ; 9(6): 395-401, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31445187

RESUMEN

PURPOSE: In recent years, the American Society for Radiation Oncology (ASTRO) has received requests for a standard list of data elements from other societies, database architects, Electronic Health Record vendors and, most recently, the pharmaceutical industry. These requests point to a growing interest in capturing radiation oncology data within registries and for quality measurement, interoperability initiatives, and research. Identifying a short and consistent list will lead to improved care coordination, a reduction in data entry by practice staff, and a more complete view of the holistic approach required for cancer treatment. METHODS AND MATERIALS: The task force formulated recommendations based on analysis from radiation specific data elements currently in use in registries, accreditation programs, incident learning systems, and electronic health records. The draft manuscript was peer reviewed by 8 reviewers and ASTRO legal counsel and was revised accordingly and posted on the ASTRO website for public comment in April 2019 for 2 weeks. The final document was approved by the ASTRO Board of Directors in June 2019.


Asunto(s)
Oncología por Radiación/normas , Consenso , Bases de Datos Factuales , Humanos , Estados Unidos
12.
Pract Radiat Oncol ; 9(2): 65-72, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30576843

RESUMEN

PURPOSE: The comprehensive identification and delineation of organs at risk (OARs) are vital to the quality of radiation therapy treatment planning and the safety of treatment delivery. This guidance aims to improve the consistency of ontouring OARs in external beam radiation therapy treatment planning by providing a single standardized resource for information regarding specific OARs to be contoured for each disease site. The guidance is organized in table format as a quality assurance tool for practices and a training resource for residents and other radiation oncology students (see supplementary materials). METHODS AND MATERIALS: The Task Force formulated recommendations based on clinical practice and consensus. The draft manuscript was peer reviewed by 16 reviewers, the American Society for Radiation Oncology (ASTRO) legal counsel, and ASTRO's Multidisciplinary Quality Assurance Subcommittee and revised accordingly. The recommendations were posted on the ASTRO website for public comment in June 2018 for a 6-week period. The final document was approved by the ASTRO Board of Directors in August 2018. RESULTS: Standardization improves patient safety, efficiency, and accuracy in radiation oncology treatment. This consensus guidance represents an ASTRO quality initiative to provide recommendations for the standardization of normal tissue contouring that is performed during external beam treatment planning for each anatomic treatment site. Table 1 defines 2 sets of structures for anatomic sites: Those that are recommended in all adult definitive cases and may assist with organ selection for palliative cases, and those that should be considered on a case-by-case basis depending on the specific clinical scenario. Table 2 outlines some of the resources available to define the parameters of general OAR tissue delineation. CONCLUSIONS: Using this paper in conjunction with resources that define tissue parameters and published dose constraints will enable practices to develop a consistent approach to normal tissue evaluation and dose documentation.


Asunto(s)
Consenso , Neoplasias/radioterapia , Órganos en Riesgo/efectos de la radiación , Garantía de la Calidad de Atención de Salud , Planificación de la Radioterapia Asistida por Computador/normas , Humanos , Neoplasias/diagnóstico por imagen , Órganos en Riesgo/diagnóstico por imagen , Seguridad del Paciente , Guías de Práctica Clínica como Asunto , Traumatismos por Radiación/etiología , Traumatismos por Radiación/prevención & control , Oncología por Radiación/métodos , Oncología por Radiación/normas , Planificación de la Radioterapia Asistida por Computador/métodos , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...