Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 108(5-2): 055210, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38115498

RESUMEN

Since the characteristic timescales of the various transport processes inside the discharge plasma span several orders of magnitude, it can be regarded as a typical fast-slow system. Interestingly, in this work, a special kind of complex oscillatory dynamics composed of a series of large-amplitude relaxation oscillations and small-amplitude near-harmonic oscillations, namely, mixed-mode oscillations (MMOs), was observed. By using the ballast resistance as the control parameter, a period-adding bifurcation sequence of the MMOs, i.e., from L^{s} to L^{s+1}, was obtained in a low-pressure DC glow discharge system. Meanwhile, a series of intermittently chaotic regions caused by inverse saddle-node bifurcation was embedded between the two adjacent periodic windows. The formation mechanism of MMOs was analyzed, and the results indicated that the competition between electron production and electron loss plays an important role. Meanwhile, the nonlinear time series analysis technique was used to study the dynamic behavior quantitatively. The attractor in the reconstructed phase space indicated the existence of the homoclinic orbits of type Γ^{-}. In addition, by calculating the largest Lyapunov exponent (LLE), the chaotic nature of these states was confirmed and quantitatively characterized. With the decrease in the ballast resistance, the return map of the chaotic state gradually changed from the nearly one-dimensional single-peak structure to the multibranch structure, which indicates that the dissipation of the system decreased. By further calculating the correlation dimension, it was shown that the complexity of the strange attractors increased for higher-order chaotic states.

2.
Molecules ; 27(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36144799

RESUMEN

The collisional electron spectroscopy method for analyzing and determining gaseous impurities was further developed to realize the operation in an open environment. In addition, the method not only facilitates the registration of the impurity components, but also the reactive radicals generated from the discharge reaction. The sandwich-like discharge structure was used to generate a stable, non-local, negative glow equipotential plasma in an open environment, and the I-V characteristic curve of the plasma was collected using an additional sensor electrode. The collisional electron spectroscopy was obtained from the first derivative of the probe current I with respect to the probe potential V by adding a diffusion function to correct it. In addition, our experiment verifies the reliability of the sink theory.


Asunto(s)
Electrones , Gases , Gases/química , Reproducibilidad de los Resultados , Análisis Espectral
3.
Phys Rev E ; 106(6-2): 065207, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36671090

RESUMEN

As a complex nonlinear medium, gas discharge plasma can exhibit various nonlinear discharge behaviors. In this study, in order to investigate the chaos phenomenon in the subnormal glow region of an undriven direct current glow discharge, a two-dimensional plasma fluid model is established coupled with a circuit model as a boundary condition. Using the applied voltage as control parameter in the simulation, the complete period-doubling bifurcation and inverse period-doubling bifurcation processes in the oscillation region are found, and the influence of the applied voltage on the spatiotemporal distribution of plasma parameters during the bifurcation-remerging process is examined. In addition, the spatial distribution of the plasma parameters of the bifurcation-remerging process is also examined. Also, a series of periodic windows are present in the chaotic region, where the positions and relative order are generally consistent with the universal sequence. Additionally, this study showed that the intermittent chaos appears near the period-3 window, and the bursts appearing in the approximate periodic motion becomes more and more frequent as the control parameters move away from the saddle-node bifurcation point, which shows the typical type-I intermittent chaos characteristics.


Asunto(s)
Electricidad , Dinámicas no Lineales , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...