Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 153, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420049

RESUMEN

High-resolution transmission electron microscopy (HRTEM) has been transformative to the field of polymer science, enabling the direct imaging of molecular structures. Although some materials have remarkable stability under electron beams, most HRTEM studies are limited by the electron dose the sample can handle. Beam damage of conjugated polymers is not yet fully understood, but it has been suggested that the diffusion of secondary reacting species may play a role. As such, we examine the effect of the addition of antioxidants to a series of solution-processable conjugated polymers as an approach to mitigating beam damage. Characterizing the effects of beam damage by calculating critical dose DC values from the decay of electron diffraction peaks shows that beam damage of conjugated polymers in the TEM can be minimized by using antioxidants at room temperature, even if the antioxidant does not alter or incorporate into polymer crystals. As a consequence, the addition of antioxidants pushes the resolution limit of polymer microscopy, enabling imaging of a 3.6 Šlattice spacing in poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3″'-di(2-octyldodecyl)-2,2';5',2″;5″,2″'-quaterthiophene-5,5″'-diyl)] (PffBT4T-2OD).

2.
J Am Chem Soc ; 142(42): 17944-17955, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31961671

RESUMEN

Relative to the rich library of small-molecule organics, few examples of ordered extended (i.e., nonmolecular) hydrocarbon networks are known. In particular, sp3 bonded, diamond-like materials represent appealing targets because of their desirable mechanical, thermal, and optical properties. While many covalent organic frameworks (COFs)-extended, covalently bonded, and porous structures-have been realized through molecular architecture with exceptional control, the design and synthesis of dense, covalent extended solids has been a longstanding challenge. Here we report the preparation of a sp3-bonded, low-dimensional hydrocarbon synthesized via high-pressure, solid-state diradical polymerization of cubane (C8H8), which is a saturated, but immensely strained, cage-like molecule. Experimental measurements show that the obtained product is crystalline with three-dimensional order that appears to largely preserve the basic structural topology of the cubane molecular precursor and exhibits high hardness (comparable to fused quartz) and thermal stability up to 300 °C. Among the plausible theoretical candidate structures, one-dimensional carbon scaffolds comprising six- and four-membered rings that pack within a pseudosquare lattice provide the best agreement with experimental data. These diamond-like molecular rods with extraordinarily small thickness are among the smallest members in the carbon nanothread family, and calculations indicate one of the stiffest one-dimensional systems known. These results present opportunities for the synthesis of purely sp3-bonded extended solids formed through the strain release of saturated molecules, as opposed to only unsaturated precursors.

3.
ACS Appl Mater Interfaces ; 11(1): 1143-1155, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30523687

RESUMEN

Junction-functionalized donor-acceptor (D-A) block copolymers (BCPs) enable spatial and electronic control over interfacial charge dynamics in excitonic devices such as solar cells. Here, we present the design, synthesis, morphology, and electronic characterization of block junction-functionalized, all-conjugated, all-crystalline D-A BCPs. Poly(3-hexylthiophene) (P3HT), a single thienylated diketopyrrolopyrrole (Th xDPPTh x, x = 1 or 2) unit, and poly{[ N, N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]- alt-5,5'-(2,2'-bithiophene)} (PNDIT2) are used as donor, interfacial unit, and acceptor, respectively. Almost all C-C coupling steps are accomplished by virtue of C-H activation. Synthesis of the macroreagent H-P3HT-Th xDPPTh x, with x determining its C-H reactivity, is key to the synthesis of various BCPs of type H-P3HT-Th xDPPTh x- block-PNDIT2. Morphology is determined from a combination of calorimetry, transmission electron microscopy (TEM), and thin-film scattering. Block copolymer crystallinity of P3HT and PNDIT2 is reduced, indicating frustrated crystallization. A long period lp is invisible from TEM, but shows up in resonant soft X-ray scattering experiments at a length scale of lp ∼ 60 nm. Photoluminescence of H-P3HT-Th xDPPTh x indicates efficient transfer of the excitation energy to the DPP chain end, but is quenched in BCP films. Transient absorption and pump-push photocurrent spectroscopies reveal geminate recombination (GR) as the main loss channel in as-prepared BCP films independent of junction functionalization. Melt annealing increases GR as a result of the low degree of crystallinity and poorly defined interfaces and additionally changes backbone orientation of PNDIT2 from face-on to edge-on. These morphological effects dominate solar cell performance and cause an insensitivity to the presence of the block junction.

4.
Structure ; 26(11): 1513-1521.e3, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30220541

RESUMEN

We introduce resonant soft X-ray scattering (RSoXS) as an approach to study the structure of proteins and other biological molecules in solution. Scattering contrast calculations suggest that RSoXS has comparable or even higher sensitivity than hard X-ray scattering because of contrast generated at the absorption edges of constituent elements, such as carbon and oxygen. Here, we demonstrate that working near the carbon edge reveals the envelope function of bovine serum albumin, using scattering volumes of 10-5 µL that are multiple orders of magnitude lower than traditional scattering experiments. Furthermore, tuning the X-ray energy within the carbon absorption edge provides different signatures of the size and shape of the protein by revealing the density of different types of bonding motifs within the protein. The combination of chemical specificity, smaller sample size, and enhanced X-ray contrast will propel RSoXS as a complementary tool to existing techniques for the study of biomolecular structure.


Asunto(s)
Albúmina Sérica Bovina/química , Difracción de Rayos X/métodos , Animales , Bovinos , Modelos Moleculares , Conformación Proteica
5.
ACS Cent Sci ; 3(7): 751-758, 2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28776017

RESUMEN

While ∼75% of commercially utilized polymers are semicrystalline, the generally low mechanical modulus of these materials, especially for those possessing a glass transition temperature below room temperature, restricts their use for structural applications. Our focus in this paper is to address this deficiency through the controlled, multiscale assembly of nanoparticles (NPs), in particular by leveraging the kinetics of polymer crystallization. This process yields a multiscale NP structure that is templated by the lamellar semicrystalline polymer morphology and spans NPs engulfed by the growing crystals, NPs ordered into layers in the interlamellar zone [spacing of [Formula: see text] (10-100 nm)], and NPs assembled into fractal objects at the interfibrillar scale, [Formula: see text] (1-10 µm). The relative fraction of NPs in this hierarchy is readily manipulated by the crystallization speed. Adding NPs usually increases the Young's modulus of the polymer, but the effects of multiscale ordering are nearly an order of magnitude larger than those for a state where the NPs are not ordered, i.e., randomly dispersed in the matrix. Since the material's fracture toughness remains practically unaffected in this process, this assembly strategy allows us to create high modulus materials that retain the attractive high toughness and low density of polymers.

6.
Soft Matter ; 13(1): 49-67, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-27506183

RESUMEN

Conjugated polymers may play an important role in various emerging optoelectronic applications because they combine the chemical versatility of organic molecules and the flexibility, stretchability and toughness of polymers with semiconducting properties. Nevertheless, in order to achieve the full potential of conjugated polymers, a clear description of how their structure, morphology, and macroscopic properties are interrelated is needed. We propose that the starting point for understanding conjugated polymers includes understanding chain conformations and phase behavior. Efforts to predict and measure the persistence length have significantly refined our intuition of the chain stiffness, and have led to predictions of nematic-to-isotropic transitions. Exploring mixing between conjugated polymers and small molecules or other polymers has demonstrated tremendous advancements in attaining the needed properties for various optoelectronic devices. Current efforts continue to refine our knowledge of chain conformations and phase behavior and the factors that influence these properties, thereby providing opportunities for the development of novel optoelectronic materials based on conjugated polymers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...