Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Ecol Evol ; 39(1): 65-77, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37940503

RESUMEN

While bee-angiosperm mutualisms are widely recognized as foundational partnerships that have shaped the diversity and structure of terrestrial ecosystems, these ancient mutualisms have been underpinned by 'silent third partners': microbes. Here, we propose reframing the canonical bee-angiosperm partnership as a three-way mutualism between bees, microbes, and angiosperms. This new conceptualization casts microbes as active symbionts, processing and protecting pollen-nectar provisions, consolidating nutrients for bee larvae, enhancing floral attractancy, facilitating plant fertilization, and defending bees and plants from pathogens. In exchange, bees and angiosperms provide their microbial associates with food, shelter, and transportation. Such microbial communities represent co-equal partners in tripartite mutualisms with bees and angiosperms, facilitating one of the most important ecological partnerships on land.


Asunto(s)
Magnoliopsida , Microbiota , Abejas , Animales , Simbiosis , Polen , Polinización , Flores
2.
Microbiome ; 11(1): 150, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452376

RESUMEN

BACKGROUND: Individuals that band together create new ecological opportunities for microorganisms. In vertical transmission, theory predicts a conserved microbiota within lineages, especially social bees. Bees exhibit solitary to social behavior among and/or within species, while life cycles can be annual or perennial. Bee nests may be used over generations or only once, and foraging ecology varies widely. To assess which traits are associated with bee microbiomes, we analyzed microbial diversity within solitary and social bees of Apidae, Colletidae, and Halictidae, three bee families in Panama's tropical forests. Our analysis considered the microbiome of adult gut contents replicated through time, localities, and seasons (wet and dry) and included bee morphology and comparison to abdominal (dissected) microbiota. Diversity and distribution of tropical bee microbes (TBM) within the corbiculate bee clade were emphasized. RESULTS: We found the eusocial corbiculate bees tended to possess a more conserved gut microbiome, attributable to vertical transmission, but microbial composition varied among closely related species. Euglossine bees (or orchid bees), corbiculates with mainly solitary behavior, had more variable gut microbiomes. Their shorter-tongued and highly seasonal species displayed greater diversity, attributable to flower-visiting habits. Surprisingly, many stingless bees, the oldest corbiculate clade, lacked bacterial genera thought to predate eusociality, while several facultatively social, and solitary bee species possessed those bacterial taxa. Indeed, nearly all bee species displayed a range of affinities for single or multiple variants of the "socially associated" bacterial taxa, which unexpectedly demonstrated high sequence variation. CONCLUSIONS: Taken together, these results call into question whether specific bacterial associates facilitate eusocial behavior, or are subsequently adopted, or indicate frequent horizontal transmission between perennial eusocial colonies and other social, facultatively social, and solitary bees. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Abejas , Animales , Microbiota/genética , Conducta Social , Microbioma Gastrointestinal/genética , Bosques
3.
Appl Environ Microbiol ; 88(19): e0053022, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36165625

RESUMEN

As rising temperatures threaten biodiversity across the globe, tropical ectotherms are thought to be particularly vulnerable due to their narrow thermal tolerance ranges. Nevertheless, physiology-based models highlighting the vulnerability of tropical organisms rarely consider the contributions of their gut microbiota, even though microbiomes influence numerous host traits, including thermal tolerance. We combined field and lab experiments to understand the response of the slender anole lizard (Anolis apletophallus) gut microbiome to climatic shifts of various magnitude and duration. First, to examine the effects of long-term climate warming in the wild, we transplanted lizards from the mainland Panama to a series of warmer islands in the Panama Canal and compared their gut microbiome compositions after three generations of divergence. Next, we mimicked the effects of a short-term "heat-wave" by using a greenhouse experiment and explored the link between gut microbiome composition and lizard thermal physiology. Finally, we examined variation in gut microbiomes in our mainland population in the years both before and after a naturally occurring drought. Our results suggest that slender anole microbiomes are surprisingly resilient to short-term warming. However, both the taxonomic and predicted functional compositions of the gut microbiome varied by sampling year across all sites, suggesting that the drought may have had a regional effect. We provide evidence that short-term heat waves may not substantially affect the gut microbiota, while more sustained climate anomalies may have effects at broad geographic scales. IMPORTANCE As climate change progresses, it is crucial to understand how animals will respond to shifts in their local environments. One component of this response involves changes in the microbial communities living in and on host organisms. These "microbiomes" can affect many processes that contribute to host health and survival, yet few studies have measured changes in the microbiomes of wild organisms experiencing novel climatic conditions. We examined the effects of shifting climates on the gut microbiome of the slender anole lizard (Anolis apletophallus) by using a combination of field and laboratory studies, including transplants to warm islands in the Panama Canal. We found that slender anole microbiomes remain stable in response to short-term warming but may be sensitive to sustained climate anomalies, such as droughts. We discuss the significance of these findings for a species that is considered highly vulnerable to climate change.


Asunto(s)
Microbioma Gastrointestinal , Lagartos , Animales , Biodiversidad , Cambio Climático , Sequías , Lagartos/fisiología
4.
Mol Ecol ; 31(7): 2140-2156, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35076975

RESUMEN

Pathogen success (risk and severity) is influenced by host-associated microbiota, but the degree to which variation in microbial community traits predict future infection presence/absence (risk) and load (severity) for the host is unknown. We conducted a time-series experiment by sampling the skin-associated bacterial communities of five amphibian species before and after exposure to the fungal pathogen, Batrachochytrium dendrobaditis (Bd). We sought to determine whether microbial community traits are predictors of, or are affected by, Bd infection risk and intensity. Our results show that richness of putative Bd-inhibitory bacteria strongly predicts infection risk, while the proportion of putative Bd-inhibitory bacteria predicts future infection intensity. Variation in microbial community composition is high across time and individual, and bacterial prevalence is low. Our findings demonstrate how ecological community traits of host-associated microbiota may be used to predict infection risk by pathogenic microbes.


Asunto(s)
Quitridiomicetos , Microbiota , Micosis , Anfibios/microbiología , Animales , Bacterias/genética , Batrachochytrium/genética , Micosis/epidemiología , Micosis/microbiología , Micosis/veterinaria , Piel/microbiología
5.
Front Microbiol ; 13: 1057626, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699601

RESUMEN

Microbes, including diverse bacteria and fungi, play an important role in the health of both solitary and social bees. Among solitary bee species, in which larvae remain in a closed brood cell throughout development, experiments that modified or eliminated the brood cell microbiome through sterilization indicated that microbes contribute substantially to larval nutrition and are in some cases essential for larval development. To better understand how feeding larvae impact the microbial community of their pollen/nectar provisions, we examine the temporal shift in the bacterial community in the presence and absence of actively feeding larvae of the solitary, stem-nesting bee, Osmia cornifrons (Megachilidae). Our results indicate that the O. cornifrons brood cell bacterial community is initially diverse. However, larval solitary bees modify the microbial community of their pollen/nectar provisions over time by suppressing or eliminating rare taxa while favoring bacterial endosymbionts of insects and diverse plant pathogens, perhaps through improved conditions or competitive release. We suspect that the proliferation of opportunistic plant pathogens may improve nutrient availability of developing larvae through degradation of pollen. Thus, the health and development of solitary bees may be interconnected with pollen bacterial diversity and perhaps with the propagation of plant pathogens.

6.
PLoS Biol ; 19(8): e3001322, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34411089

RESUMEN

Marine multicellular organisms host a diverse collection of bacteria, archaea, microbial eukaryotes, and viruses that form their microbiome. Such host-associated microbes can significantly influence the host's physiological capacities; however, the identity and functional role(s) of key members of the microbiome ("core microbiome") in most marine hosts coexisting in natural settings remain obscure. Also unclear is how dynamic interactions between hosts and the immense standing pool of microbial genetic variation will affect marine ecosystems' capacity to adjust to environmental changes. Here, we argue that significantly advancing our understanding of how host-associated microbes shape marine hosts' plastic and adaptive responses to environmental change requires (i) recognizing that individual host-microbe systems do not exist in an ecological or evolutionary vacuum and (ii) expanding the field toward long-term, multidisciplinary research on entire communities of hosts and microbes. Natural experiments, such as time-calibrated geological events associated with well-characterized environmental gradients, provide unique ecological and evolutionary contexts to address this challenge. We focus here particularly on mutualistic interactions between hosts and microbes, but note that many of the same lessons and approaches would apply to other types of interactions.


Asunto(s)
Aclimatación , Organismos Acuáticos/microbiología , Evolución Biológica , Ecología , Microbiota , Animales , Ecosistema , Humanos , Simbiosis
8.
Appl Environ Microbiol ; 87(7)2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33514519

RESUMEN

The composition of tick microbiomes varies both within and among tick species. Whether this variation is intrinsic (related to tick characteristics) or extrinsic (related to vertebrate host and habitat) is poorly understood but important, as microbiota can influence the reproductive success and vector competence of ticks. We aimed to uncover what intrinsic and extrinsic factors best explain the microbial composition and taxon richness of 11 species of neotropical ticks collected from eight species of small mammals in 18 forest fragments across central Panama. Microbial richness varied among tick species, life stages, and collection sites but was not related to host blood source. Microbiome composition was best explained by tick life stage, with bacterial assemblages of larvae being a subset of those of nymphs. Collection site explained most of the bacterial taxa with differential abundance across intrinsic and extrinsic factors. Francisella and Rickettsia were highly prevalent, but their proportional abundance differed greatly among tick species, and we found both positive and negative cooccurrence between members of these two genera. Other tick endosymbionts (e.g., Coxiella and Rickettsiella) were associated with specific tick species. In addition, we detected Anaplasma and Bartonella in several tick species. Our results indicate that the microbial composition and richness of neotropical ticks are principally related to intrinsic factors (tick species and life stage) and collection site. Taken together, our analysis informs how tick microbiomes are structured and can help anchor our understanding of tick microbiomes from tropical environments more broadly.IMPORTANCE Blood-feeding arthropod microbiomes often play important roles in disease transmission, yet the factors that structure tick microbial communities in the Neotropics are unknown. Utilizing ticks collected from live animals in neotropical forest fragments, this study teases apart the contributions of intrinsic and extrinsic tick-associated factors on tick microbial composition as well as which specific microbes contribute to differences across tick species, tick life stages, the mammals they fed on, and the locations from where they were sampled. Furthermore, this study provides revelations of how notable tick-associated bacterial genera are interacting with other tick-associated microbes as well as the forest animals they encounter.


Asunto(s)
Bacterias/aislamiento & purificación , Microbiota , Garrapatas/microbiología , Animales , Bosques , Larva/crecimiento & desarrollo , Larva/microbiología , Mamíferos/parasitología , Ninfa/crecimiento & desarrollo , Ninfa/microbiología , Panamá , Garrapatas/crecimiento & desarrollo
9.
Nat Ecol Evol ; 3(3): 381-389, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30778181

RESUMEN

Animal-associated microbiomes are integral to host health, yet key biotic and abiotic factors that shape host-associated microbial communities at the global scale remain poorly understood. We investigated global patterns in amphibian skin bacterial communities, incorporating samples from 2,349 individuals representing 205 amphibian species across a broad biogeographic range. We analysed how biotic and abiotic factors correlate with skin microbial communities using multiple statistical approaches. Global amphibian skin bacterial richness was consistently correlated with temperature-associated factors. We found more diverse skin microbiomes in environments with colder winters and less stable thermal conditions compared with environments with warm winters and less annual temperature variation. We used bioinformatically predicted bacterial growth rates, dormancy genes and antibiotic synthesis genes, as well as inferred bacterial thermal growth optima to propose mechanistic hypotheses that may explain the observed patterns. We conclude that temporal and spatial characteristics of the host's macro-environment mediate microbial diversity.


Asunto(s)
Anuros/microbiología , Clima , Microbiota , Urodelos/microbiología , Animales , Bacterias/clasificación , Fenómenos Fisiológicos Bacterianos , Piel/microbiología
10.
ISME J ; 13(2): 361-373, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30254321

RESUMEN

Management of hyper-virulent generalist pathogens is an emergent global challenge, yet for most disease systems we lack a basic understanding as to why some host species suffer mass mortalities, while others resist epizootics. We studied two sympatric species of frogs from the Colombian Andes, which coexist with the amphibian pathogen Batrachochytrium dendrobatidis (Bd), to understand why some species did not succumb to the infection. We found high Bd prevalence in juveniles for both species, yet infection intensities remained low. We also found that bacterial community composition and host defense peptides are specific to amphibian life stages. We detected abundant Bd-inhibitory skin bacteria across life stages and Bd-inhibitory defense peptides post-metamorphosis in both species. Bd-inhibitory bacteria were proportionally more abundant in adults of both species than in earlier developmental stages. We tested for activity of peptides against the skin microbiota and found that in general peptides did not negatively affect bacterial growth and in some instances facilitated growth. Our results suggest that symbiotic bacteria and antimicrobial peptides may be co-selected for, and that together they contribute to the ability of Andean amphibian species to coexist with the global pandemic lineage of Bd.


Asunto(s)
Anuros/microbiología , Quitridiomicetos/aislamiento & purificación , Microbiota , Péptidos/farmacología , Animales , Anuros/crecimiento & desarrollo , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Colombia , Micosis/microbiología , Micosis/veterinaria , Péptidos/análisis , Piel/química , Piel/microbiología , Simbiosis , Simpatría
11.
Mol Ecol ; 27(8): 1992-2006, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29411448

RESUMEN

Amphibians undergo significant developmental changes during their life cycle, as they typically move from a primarily aquatic environment to a more terrestrial one. Amphibian skin is a mucosal tissue that assembles communities of symbiotic microbiota. However, it is currently not well understood as to where amphibians acquire their skin symbionts, and whether the sources of microbial symbionts change throughout development. In this study, we utilized data collected from four wild boreal toad populations (Anaxyrus boreas); specifically, we sampled the skin bacterial communities during toad development, including eggs, tadpoles, subadults and adults as well as environmental sources of bacteria (water, aquatic sediment and soil). Using 16S rRNA marker gene profiling coupled with SourceTracker, we show that while primary environmental sources remained constant throughout the life cycle, secondary sources of boreal toad symbionts significantly changed with development. We found that toad skin communities changed predictably across development and that two developmental disturbance events (egg hatching and metamorphosis) dictated major changes. Toad skin communities assembled to alternative stable states following each of these developmental disturbances. Using the predicted average rRNA operon copy number of the communities at each life stage, we showed how the skin bacterial communities undergo a successional pattern whereby "fast-growing" (copiotroph) generalist bacteria dominate first before "slow-growing" (oligotroph) specialized bacteria take over. Our study highlights how host-associated bacterial community assembly is tightly coupled to host development and that host-associated communities demonstrate successional patterns akin to those observed in free-living bacteria as well as macrofaunal communities.


Asunto(s)
Bufonidae/microbiología , Interacciones Microbiota-Huesped/genética , Metamorfosis Biológica/genética , Simbiosis/genética , Animales , Bufonidae/genética , Bufonidae/crecimiento & desarrollo , Larva/genética , Larva/crecimiento & desarrollo , Larva/microbiología
12.
Ann N Y Acad Sci ; 1429(1): 18-30, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29479716

RESUMEN

The use of beneficial microbes to improve host attributes, referred to as probiotic therapy, has been increasingly applied to industries, including aquaculture, agriculture, and human medicine, and is emerging in the field of wildlife medicine. However, there is a general lack of shared knowledge regarding successful practices as well as ecological processes that underlie host-microbe interactions. Presently, probiotics are being developed specifically for preventing and treating particular infectious diseases as an alternative to antibiotic treatments and chemotherapy. We review research on probiotics developed for mitigation of infectious disease in the aforementioned industries to gain insight into how probiotics may be effective in reducing wildlife disease risk. We examine the trends of successful in vivo probiotic applications for disease systems and identify common objectives to reduce intestinal pathogens and sexually transmitted and respiratory diseases, inhibit skin pathogens, and serve as environmental prophylaxis to reduce pathogen loads in the environment. We conclude by highlighting the frontier of wildlife probiotics research and identifying knowledge gaps where research is needed.


Asunto(s)
Animales Salvajes , Control de Enfermedades Transmisibles/métodos , Enfermedades Transmisibles/veterinaria , Probióticos , Animales , Enfermedades Transmisibles/transmisión , Interacciones Huésped-Patógeno
13.
Front Microbiol ; 8: 2350, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29276502

RESUMEN

Global amphibian decline linked to fungal pathogens has galvanized research on applied amphibian conservation. Skin-associated bacterial communities of amphibians have been shown to mediate fungal skin infections and the development of probiotic treatments with antifungal bacteria has become an emergent area of research. While exploring the role of protective bacteria has been a primary focus for amphibian conservation, we aim to expand and study the other microbes present in amphibian skin communities including fungi and other micro-eukaryotes. Here, we characterize skin-associated bacteria and micro-eukaryotic diversity found across life stages of Cascades frog (Rana cascadae) and their associated aquatic environments using culture independent 16S and 18S rRNA marker-gene sequencing. Individuals of various life stages of Cascades frogs were sampled from a population located in the Trinity Alps in Northern California during an epidemic of the chytrid fungus, Batrachochytrium dendrobatidis. We filtered the bacterial sequences against a published database of bacteria known to inhibit B. dendrobatidis in co-culture to estimate the proportion of the skin bacterial community that is likely to provide defense against B. dendrobatidis. Tadpoles had a significantly higher proportion of B. dendrobatidis-inhibitory bacterial sequence matches relative to subadult and adult Cascades frogs. We applied a network analysis to examine patterns of correlation between bacterial taxa and B. dendrobatidis, as well as micro-eukaryotic taxa and B. dendrobatidis. Combined with the published database of bacteria known to inhibit B. dendrobatidis, we used the network analysis to identify bacteria that negatively correlated with B. dendrobatidis and thus could be good probiotic candidates in the Cascades frog system.

14.
mSystems ; 1(4)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27822543

RESUMEN

Examining the way in which animals, including those in captivity, interact with their environment is extremely important for studying ecological processes and developing sophisticated animal husbandry. Here we use the Komodo dragon (Varanus komodoensis) to quantify the degree of sharing of salivary, skin, and fecal microbiota with their environment in captivity. Both species richness and microbial community composition of most surfaces in the Komodo dragon's environment are similar to the Komodo dragon's salivary and skin microbiota but less similar to the stool-associated microbiota. We additionally compared host-environment microbiome sharing between captive Komodo dragons and their enclosures, humans and pets and their homes, and wild amphibians and their environments. We observed similar host-environment microbiome sharing patterns among humans and their pets and Komodo dragons, with high levels of human/pet- and Komodo dragon-associated microbes on home and enclosure surfaces. In contrast, only small amounts of amphibian-associated microbes were detected in the animals' environments. We suggest that the degree of sharing between the Komodo dragon microbiota and its enclosure surfaces has important implications for animal health. These animals evolved in the context of constant exposure to a complex environmental microbiota, which likely shaped their physiological development; in captivity, these animals will not receive significant exposure to microbes not already in their enclosure, with unknown consequences for their health. IMPORTANCE Animals, including humans, have evolved in the context of exposure to a variety of microbial organisms present in the environment. Only recently have humans, and some animals, begun to spend a significant amount of time in enclosed artificial environments, rather than in the more natural spaces in which most of evolution took place. The consequences of this radical change in lifestyle likely extend to the microbes residing in and on our bodies and may have important implications for health and disease. A full characterization of host-microbe sharing in both closed and open environments will provide crucial information that may enable the improvement of health in humans and in captive animals, both of which experience a greater incidence of disease (including chronic illness) than counterparts living under more ecologically natural conditions.

15.
Proc Biol Sci ; 283(1839)2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27655769

RESUMEN

Host-associated microbiomes perform many beneficial functions including resisting pathogens and training the immune system. Here, we show that amphibians developing in captivity lose substantial skin bacterial diversity, primarily due to reduced ongoing input from environmental sources. We combined studies of wild and captive amphibians with a database of over 1 000 strains that allows us to examine antifungal function of the skin microbiome. We tracked skin bacterial communities of 62 endangered boreal toads, Anaxyrus boreas, across 18 time points, four probiotic treatments, and two exposures to the lethal fungal pathogen Batrachochytrium dendrobatidis (Bd) in captivity, and compared these to 33 samples collected from wild populations at the same life stage. As the amphibians in captivity lost the Bd-inhibitory bacteria through time, the proportion of individuals exposed to Bd that became infected rose from 33% to 100% in subsequent exposures. Inoculations of the Bd-inhibitory probiotic Janthinobacterium lividum resulted in a 40% increase in survival during the second Bd challenge, indicating that the effect of microbiome depletion was reversible by restoring Bd-inhibitory bacteria. Taken together, this study highlights the functional role of ongoing environmental inputs of skin-associated bacteria in mitigating a devastating amphibian pathogen, and that long-term captivity decreases this defensive function.


Asunto(s)
Bufonidae/microbiología , Quitridiomicetos/patogenicidad , Micosis/veterinaria , Probióticos , Animales , Microbiota , Micosis/prevención & control
16.
Naturwissenschaften ; 103(3-4): 25, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26924012

RESUMEN

Animal-associated microbial communities can play major roles in the physiology, development, ecology, and evolution of their hosts, but the study of their diversity has yet focused on a limited number of host species. In this study, we used high-throughput sequencing of partial sequences of the bacterial 16S rRNA gene to assess the diversity of the gut-inhabiting bacterial communities of 212 specimens of tropical anuran amphibians from Brazil and Madagascar. The core gut-associated bacterial communities among tadpoles from two different continents strongly overlapped, with eight highly represented operational taxonomic units (OTUs) in common. In contrast, the core communities of adults and tadpoles from Brazil were less similar with only one shared OTU. This suggests a community turnover at metamorphosis. Bacterial diversity was higher in tadpoles compared to adults. Distinct differences in composition and diversity occurred among gut bacterial communities of conspecific tadpoles from different water bodies and after experimental fasting for 8 days, demonstrating the influence of both environmental factors and food on the community structure. Communities from syntopic tadpoles clustered by host species both in Madagascar and Brazil, and the Malagasy tadpoles also had species-specific isotope signatures. We recommend future studies to analyze the turnover of anuran gut bacterial communities at metamorphosis, compare the tadpole core communities with those of other aquatic organisms, and assess the possible function of the gut microbiota as a reservoir for protective bacteria on the amphibian skin.


Asunto(s)
Anuros/microbiología , Fenómenos Fisiológicos Bacterianos , Tracto Gastrointestinal/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Brasil , Larva , Madagascar , Metamorfosis Biológica , ARN Ribosómico 16S/genética
17.
Front Microbiol ; 7: 68, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26870025

RESUMEN

Emerging infectious diseases in wildlife are responsible for massive population declines. In amphibians, chytridiomycosis caused by Batrachochytrium dendrobatidis, Bd, has severely affected many amphibian populations and species around the world. One promising management strategy is probiotic bioaugmentation of antifungal bacteria on amphibian skin. In vivo experimental trials using bioaugmentation strategies have had mixed results, and therefore a more informed strategy is needed to select successful probiotic candidates. Metagenomic, transcriptomic, and metabolomic methods, colloquially called "omics," are approaches that can better inform probiotic selection and optimize selection protocols. The integration of multiple omic data using bioinformatic and statistical tools and in silico models that link bacterial community structure with bacterial defensive function can allow the identification of species involved in pathogen inhibition. We recommend using 16S rRNA gene amplicon sequencing and methods such as indicator species analysis, the Kolmogorov-Smirnov Measure, and co-occurrence networks to identify bacteria that are associated with pathogen resistance in field surveys and experimental trials. In addition to 16S amplicon sequencing, we recommend approaches that give insight into symbiont function such as shotgun metagenomics, metatranscriptomics, or metabolomics to maximize the probability of finding effective probiotic candidates, which can then be isolated in culture and tested in persistence and clinical trials. An effective mitigation strategy to ameliorate chytridiomycosis and other emerging infectious diseases is necessary; the advancement of omic methods and the integration of multiple omic data provide a promising avenue toward conservation of imperiled species.

18.
ISME J ; 10(4): 934-44, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26565725

RESUMEN

Increasingly, host-associated microbiota are recognized to mediate pathogen establishment, providing new ecological perspectives on health and disease. Amphibian skin-associated microbiota interact with the fungal pathogen, Batrachochytrium dendrobatidis (Bd), but little is known about microbial turnover during host development and associations with host immune function. We surveyed skin microbiota of Colorado's endangered boreal toads (Anaxyrus boreas), sampling 181 toads across four life stages (tadpoles, metamorphs, subadults and adults). Our goals were to (1) understand variation in microbial community structure among individuals and sites, (2) characterize shifts in communities during development and (3) examine the prevalence and abundance of known Bd-inhibitory bacteria. We used high-throughput 16S and 18S rRNA gene sequencing (Illumina MiSeq) to characterize bacteria and microeukaryotes, respectively. Life stage had the largest effect on the toad skin microbial community, and site and Bd presence also contributed. Proteobacteria dominated tadpole microbial communities, but were later replaced by Actinobacteria. Microeukaryotes on tadpoles were dominated by the classes Alveolata and Stramenopiles, while fungal groups replaced these groups after metamorphosis. Using a novel database of Bd-inhibitory bacteria, we found fewer Bd-inhibitory bacteria in post-metamorphic stages correlated with increased skin fungi, suggesting that bacteria have a strong role in early developmental stages and reduce skin-associated fungi.


Asunto(s)
Actinobacteria/fisiología , Bufonidae/crecimiento & desarrollo , Bufonidae/microbiología , Quitridiomicetos/fisiología , Microbiota , Piel/microbiología , Animales , Colorado , Larva/microbiología , Metamorfosis Biológica , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN
19.
Mol Ecol ; 23(6): 1238-1250, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24171949

RESUMEN

Skin-associated bacteria of amphibians are increasingly recognized for their role in defence against pathogens, yet we have little understanding of their basic ecology. Here, we use high-throughput 16S rRNA gene sequencing to examine the host and environmental influences on the skin microbiota of the cohabiting amphibian species Anaxyrus boreas, Pseudacris regilla, Taricha torosa and Lithobates catesbeianus from the Central Valley in California. We also studied populations of Rana cascadae over a large geographic range in the Klamath Mountain range of Northern California, and across developmental stages within a single site. Dominant bacterial phylotypes on amphibian skin included taxa from Bacteroidetes, Gammaproteobacteria, Alphaproteobacteria, Firmicutes, Sphingobacteria and Actinobacteria. Amphibian species identity was the strongest predictor of microbial community composition. Secondarily, within a given amphibian species, wetland site explained significant variation. Amphibian-associated microbiota differed systematically from microbial assemblages in their environments. Rana cascadae tadpoles have skin bacterial communities distinct from postmetamorphic conspecifics, indicating a strong developmental shift in the skin microbes following metamorphosis. Establishing patterns observed in the skin microbiota of wild amphibians and environmental factors that underlie them is necessary to understand skin symbiont community assembly, and ultimately, the role skin microbiota play in the extended host phenotype including disease resistance.


Asunto(s)
Anfibios/microbiología , Bacterias/clasificación , Microbiota , Ranidae/microbiología , Piel/microbiología , Animales , Bacterias/genética , Biodiversidad , California , ADN Bacteriano/genética , Lagos , Larva/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Suelo , Especificidad de la Especie , Microbiología del Agua
20.
J Appl Ecol ; 50(3): 702-712, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32336775

RESUMEN

Parasites and pathogens of wildlife can threaten biodiversity, infect humans and domestic animals, and cause significant economic losses, providing incentives to manage wildlife diseases. Recent insights from disease ecology have helped transform our understanding of infectious disease dynamics and yielded new strategies to better manage wildlife diseases. Simultaneously, wildlife disease management (WDM) presents opportunities for large-scale empirical tests of disease ecology theory in diverse natural systems.To assess whether the potential complementarity between WDM and disease ecology theory has been realized, we evaluate the extent to which specific concepts in disease ecology theory have been explicitly applied in peer-reviewed WDM literature.While only half of WDM articles published in the past decade incorporated disease ecology theory, theory has been incorporated with increasing frequency over the past 40 years. Contrary to expectations, articles authored by academics were no more likely to apply disease ecology theory, but articles that explain unsuccessful management often do so in terms of theory.Some theoretical concepts such as density-dependent transmission have been commonly applied, whereas emerging concepts such as pathogen evolutionary responses to management, biodiversity-disease relationships and within-host parasite interactions have not yet been fully integrated as management considerations. Synthesis and applications. Theory-based disease management can meet the needs of both academics and managers by testing disease ecology theory and improving disease interventions. Theoretical concepts that have received limited attention to date in wildlife disease management could provide a basis for improving management and advancing disease ecology in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...