Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 1928, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317640

RESUMEN

How rapidly natural selection sorts genome-wide standing genetic variation during adaptation remains largely unstudied experimentally. Here, we present a genomic release-recapture experiment using paired threespine stickleback fish populations adapted to selectively different lake and stream habitats. First, we use pooled whole-genome sequence data from the original populations to identify hundreds of candidate genome regions likely under divergent selection between these habitats. Next, we generate F2 hybrids from the same lake-stream population pair in the laboratory and release thousands of juveniles into a natural stream habitat. Comparing the individuals surviving one year of stream selection to a reference sample of F2 hybrids allows us to detect frequency shifts across the candidate regions toward the genetic variants typical of the stream population-an experimental outcome consistent with polygenic directional selection. Our study reveals that adaptation in nature can be detected as a genome-wide signal over just a single generation.


Asunto(s)
Genoma , Smegmamorpha/genética , Smegmamorpha/fisiología , Adaptación Fisiológica/genética , Alelos , Animales , Biología Computacional , Ecosistema , Evolución Molecular , Femenino , Genética de Población , Lagos , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Ríos , Selección Genética
2.
Hepatol Commun ; 4(1): 109-125, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31909359

RESUMEN

A promising approach for the treatment of nonalcoholic steatohepatitis (NASH) is the inhibition of enhanced hepatic de novo lipogenesis (DNL), which is the synthesis of fatty acids from nonlipid sources. This study assesses three approaches to DNL suppression in a newly developed dietary NASH mouse model: i) dietary intervention (switch from NASH-inducing diet to normal diet); ii) inhibition of acetyl-coenzyme A carboxylase (ACC), the enzyme catalyzing the rate-limiting step in DNL; and iii) activation of farnesoid X receptor (FXR), a major transcriptional regulator of DNL. C57BL/6J mice on a high-fat diet combined with ad libitum consumption of a fructose-sucrose solution developed several of the liver histologic features seen in human disease, including steatosis, inflammation, and fibrosis, accompanied by elevated fibrosis biomarkers and liver injury enzymes. Obesity and metabolic impairments were associated with increased intestinal permeability and progression to adenoma and hepatocellular carcinoma. All three approaches led to resolution of established NASH with fibrosis in mice; however, some differences were noted, e.g., with respect to the degree of hepatic steatosis attenuation. While ACC inhibition resulted in elevated blood triglycerides and peripheral obesity, FXR activation prevented peripheral obesity in NASH mice. Comparative transcriptome analysis underlined the translatability of the mouse model to human NASH and revealed novel mechanistic insights into differential regulation of lipid, inflammatory, and extracellular matrix pathways by FXR agonism and ACC inhibition. Conclusion: Novel insights are provided on back translation of clinically observed endpoints of DNL inhibition by targeting ACC or FXR, which are promising therapeutic options for the treatment of NASH, in a newly developed diet-induced NASH mouse model.

3.
Immunol Lett ; 198: 60-65, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29709545

RESUMEN

Dipeptidyl peptidase 9 (DPP9) is a ubiquitously expressed intracellular prolyl peptidase implicated in immunoregulation. However, its physiological relevance in the immune system remains largely unknown. We investigated the role of DPP9 enzyme in immune system by characterizing DPP9 knock-in mice expressing a catalytically inactive S729A mutant of DPP9 enzyme (DPP9ki/ki mice). DPP9ki/ki mice show reduced number of lymphoid and myeloid cells in fetal liver and postnatal blood but their hematopoietic cells are fully functional and able to reconstitute lymphoid and myeloid lineages even in competitive mixed chimeras. These studies demonstrate that inactivation of DPP9 enzymatic activity does not lead to any perturbations in mouse hematopoiesis.


Asunto(s)
Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Hematopoyesis/inmunología , Células Madre Hematopoyéticas/fisiología , Recuento de Células , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Técnicas de Sustitución del Gen , Células Madre Hematopoyéticas/citología , Linfocitos/citología , Células Mieloides/citología
4.
Dev Biol ; 431(2): 297-308, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28887018

RESUMEN

Dipeptidyl peptidase 9 (DPP9) is an intracellular N-terminal post-proline-cleaving enzyme whose physiological function remains largely unknown. We investigated the role of DPP9 enzyme in vivo by characterizing knock-in mice expressing a catalytically inactive mutant form of DPP9 (S729A; DPP9ki/ki mice). We show that DPP9ki/ki mice die within 12-18h after birth. The neonatal lethality can be rescued by manual feeding, indicating that a suckling defect is the primary cause of neonatal lethality. The suckling defect results from microglossia, and is characterized by abnormal formation of intrinsic muscles at the distal tongue. In DPP9ki/ki mice, the number of occipital somite-derived migratory muscle progenitors, forming distal tongue intrinsic muscles, is reduced due to increased apoptosis. In contrast, intrinsic muscles of the proximal tongue and extrinsic tongue muscles, which derive from head mesoderm, develop normally in DPP9ki/ki mice. Thus, lack of DPP9 activity in mice leads to impaired tongue development, suckling defect and subsequent neonatal lethality due to impaired survival of a specific subset of migratory tongue muscle progenitors.


Asunto(s)
Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Músculo Esquelético/citología , Células Madre/citología , Células Madre/enzimología , Lengua/citología , Alanina/genética , Animales , Animales Recién Nacidos , Animales Lactantes , Dominio Catalítico , Recuento de Células , Supervivencia Celular , Ratones , Ratones Transgénicos , Desarrollo de Músculos , Proteínas Musculares/metabolismo , Mutación Puntual/genética , Receptores CXCR4/metabolismo , Serina/genética , Enfermedades de la Lengua/patología
6.
Nat Commun ; 6: 8767, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26556609

RESUMEN

Populations occurring in similar habitats and displaying similar phenotypes are increasingly used to explore parallel evolution at the molecular level. This generally ignores the possibility that parallel evolution can be mimicked by the fragmentation of an ancestral population followed by genetic exchange with ecologically different populations. Here we demonstrate such an ecological vicariance scenario in multiple stream populations of threespine stickleback fish divergent from a single adjacent lake population. On the basis of demographic and population genomic analyses, we infer the initial spread of a stream-adapted ancestor followed by the emergence of a lake-adapted population, that selective sweeps have occurred mainly in the lake population, that adaptive lake-stream divergence is maintained in the face of gene flow from the lake into the streams, and that this divergence involves major inversion polymorphisms also important to marine-freshwater stickleback divergence. Overall, our study highlights the need for a robust understanding of the demographic and selective history in evolutionary investigations.


Asunto(s)
Ecosistema , Genómica , Smegmamorpha/genética , Adaptación Fisiológica/genética , Animales , Variación Genética , Lagos , Desequilibrio de Ligamiento , Compuestos Organofosforados , Filogenia , Compuestos de Piridinio
7.
PLoS One ; 10(11): e0141231, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26555339

RESUMEN

Alport syndrome is a genetic disease of collagen IV (α3, 4, 5) resulting in renal failure. This study was designed to investigate sex-phenotype correlations and evaluate the contribution of macrophage infiltration to disease progression using Col4a3 knock out (Col4a3KO) mice, an established genetic model of autosomal recessive Alport syndrome. No sex differences in the evolution of body mass loss, renal pathology, biomarkers of tubular damage KIM-1 and NGAL, or deterioration of kidney function were observed during the life span of Col4a3KO mice. These findings confirm that, similar to human autosomal recessive Alport syndrome, female and male Col4a3KO mice develop renal failure at the same age and with similar severity. The specific contribution of macrophage infiltration to Alport disease, one of the prominent features of the disease in human and Col4a3KO mice, remains unknown. This study shows that depletion of kidney macrophages in Col4a3KO male mice by administration of clodronate liposomes, prior to clinical onset of disease and throughout the study period, does not protect the mice from renal failure and interstitial fibrosis, nor delay disease progression. These results suggest that therapy targeting macrophage recruitment to kidney is unlikely to be effective as treatment of Alport syndrome.


Asunto(s)
Ácido Clodrónico/uso terapéutico , Colágeno Tipo IV/deficiencia , Macrófagos/efectos de los fármacos , Nefritis Hereditaria/fisiopatología , Animales , Apoptosis , Autoantígenos/genética , Ácido Clodrónico/administración & dosificación , Ácido Clodrónico/farmacología , Colágeno Tipo IV/genética , Progresión de la Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Riñón/patología , Fallo Renal Crónico/etiología , Liposomas , Macrófagos/patología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Modelos Animales , Nefritis Hereditaria/tratamiento farmacológico , Nefritis Hereditaria/genética , Nefritis Hereditaria/inmunología , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...