Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Brain ; 15(1): 18, 2022 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-35183222

RESUMEN

SorLA is a member of the Vps10p-domain (Vps10p-D) receptor family of type-I transmembrane proteins conveying neuronal endosomal sorting. The extracellular/luminal moiety of SorLA has a unique mosaic domain composition and interacts with a large number of different and partially unrelated ligands, including the amyloid precursor protein as well as amyloid-ß. Several studies support a strong association of SorLA with sporadic and familial forms of Alzheimer's disease (AD). Although SorLA seems to be an important factor in AD, the large number of different ligands suggests a role as a neuronal multifunctional receptor with additional intracellular sorting capacities. Therefore, understanding the determinants of SorLA's subcellular targeting might be pertinent for understanding neuronal endosomal sorting mechanisms in general. A number of cytosolic adaptor proteins have already been demonstrated to determine intracellular trafficking of SorLA. Most of these adaptors and several ligands of the extracellular/luminal moiety are shared with the Vps10p-D receptor Sortilin. Although SorLA and Sortilin show both a predominant intracellular and endosomal localization, they are targeted to different endosomal compartments. Thus, independent adaptor proteins may convey their differential endosomal targeting. Here, we hypothesized that Sortilin and SorLA interact with the cytosolic adaptors PSD95 and PICK1 which have been shown to bind the Vps10p-D receptor SorCS3. We observed only an interaction for SorLA and PICK1 in mammalian-two-hybrid, pull-down and cellular recruitment experiments. We demonstrate by mutational analysis that the C-terminal minimal PDZ domain binding motif VIA of SorLA mediates the interaction. Moreover, we show co-localization of SorLA and PICK1 at vesicular structures in primary neurons. Although the physiological role of the interaction between PICK1 and SorLA remains unsolved, our study suggests that PICK1 partakes in regulating SorLA's intracellular itinerary.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Endosomas/metabolismo , Mamíferos/metabolismo , Transporte de Proteínas
2.
Autophagy ; 18(9): 2068-2085, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34964690

RESUMEN

PSENEN/PEN2 is the smallest subunit of the γ-secretase complex, an intramembrane protease that cleaves proteins within their transmembrane domains. Mutations in components of the γ-secretase underlie familial Alzheimer disease. In addition to its proteolytic activity, supplementary, γ-secretase independent, functions in the macroautophagy/autophagy-lysosome system have been proposed. Here, we screened for PSENEN-interacting proteins and identified CLN3. Mutations in CLN3 are causative for juvenile neuronal ceroid lipofuscinosis, a rare lysosomal storage disorder considered the most common neurodegenerative disease in children. As mutations in the PSENEN and CLN3 genes cause different neurodegenerative diseases, understanding shared cellular functions of both proteins might be pertinent for understanding general cellular mechanisms underlying neurodegeneration. We hypothesized that CLN3 modulates γ-secretase activity and that PSENEN and CLN3 play associated roles in the autophagy-lysosome system. We applied CRISPR gene-editing and obtained independent isogenic HeLa knockout cell lines for PSENEN and CLN3. Following previous studies, we demonstrate that PSENEN is essential for forming a functional γ-secretase complex and is indispensable for γ-secretase activity. In contrast, CLN3 does not modulate γ-secretase activity to a significant degree. We observed in PSENEN- and CLN3-knockout cells corresponding alterations in the autophagy-lysosome system. These include reduced activity of lysosomal enzymes and lysosome number, an increased number of autophagosomes, increased lysosome-autophagosome fusion, and elevated levels of TFEB (transcription factor EB). Our study strongly suggests converging roles of PSENEN and CLN3 in the autophagy-lysosome system in a γ-secretase activity-independent manner, supporting the idea of common cytopathological processes underlying different neurodegenerative diseases.Abbreviations: Aß, amyloid-beta; AD, Alzheimer disease; APP, amyloid precursor protein; ATP5MC, ATP synthase membrane subunit c; DQ-BSA, dye-quenched bovine serum albumin; ER, endoplasmic reticulum; GFP, green fluorescent protein; ICC, immunocytochemistry; ICD, intracellular domain; JNCL, juvenile neuronal ceroid lipofuscinosis; KO, knockout; LC3, microtubule associated protein 1 light chain 3; NCL, neuronal ceroid lipofuscinoses; PSEN, presenilin; PSENEN/PEN2: presenilin enhancer, gamma-secretase subunit; TAP, tandem affinity purification; TEV, tobacco etch virus; TF, transferrin; WB, Western blot; WT, wild type.


Asunto(s)
Enfermedad de Alzheimer , Lipofuscinosis Ceroideas Neuronales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Autofagia/genética , Niño , Humanos , Lisosomas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Presenilinas/genética , Presenilinas/metabolismo , Factores de Transcripción/metabolismo
3.
Mol Brain ; 13(1): 148, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33172478

RESUMEN

Neuronal activity-regulated gene transcription underlies plasticity-dependent changes in the molecular composition and structure of neurons. A large number of genes regulated by different neuronal plasticity inducing pathways have been identified, but altered gene expression levels represent only part of the complexity of the activity-regulated transcriptional program. Alternative splicing, the differential inclusion and exclusion of exonic sequence in mRNA, is an additional mechanism that is thought to define the activity-dependent transcriptome. Here, we present a genome wide microarray-based survey to identify exons with increased expression levels at 1, 4 or 8 h following neuronal activity in the murine hippocampus provoked by generalized seizures. We used two different bioinformatics approaches to identify alternative activity-induced exon usage and to predict alternative splicing, ANOSVA (ANalysis Of Splicing VAriation) which we here adjusted to accommodate data from different time points and FIRMA (Finding Isoforms using Robust Multichip Analysis). RNA sequencing, in situ hybridization and reverse transcription PCR validate selected activity-dependent splicing events of previously described and so far undescribed activity-regulated transcripts, including Homer1a, Homer1d, Ania3, Errfi1, Inhba, Dclk1, Rcan1, Cda, Tpm1 and Krt75. Taken together, our survey significantly adds to the comprehensive understanding of the complex activity-dependent neuronal transcriptomic signature. In addition, we provide data sets that will serve as rich resources for future comparative expression analyses.


Asunto(s)
Empalme Alternativo/genética , Exones/genética , Neuronas/metabolismo , Animales , Masculino , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Reproducibilidad de los Resultados
4.
J Neurosci ; 39(41): 8149-8163, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31488612

RESUMEN

Arc/Arg3.1, an activity regulated immediate early gene, is essential for learning and memory, synaptic plasticity, and maturation of neural networks. It has also been implicated in several neurodevelopmental disorders, including schizophrenia. Here, we used male and female constitutive and conditional Arc/Arg3.1 knock-out (KO) mice to investigate the causal relationship between Arc/Arg3.1 deletion and schizophrenia-linked neurophysiological and behavioral phenotypes. Using in vivo local field potential recordings, we observed dampened oscillatory activity in the prefrontal cortex (PFC) of the KO and early conditional KO (early-cKO) mice, in which Arc/Arg3.1 was deleted perinatally. Whole-cell patch-clamp recordings from neurons in PFC slices revealed altered synaptic properties and reduced network gain in the KO mice as possible mechanisms underlying the oscillation deficits. In contrast, we measured normal oscillatory activity in the PFC of late conditional KO (late-cKO) mice, in which Arc/Arg3.1 was deleted during late postnatal development. Our data show that constitutive Arc/Arg3.1 KO mice exhibit no deficit in social engagement, working memory, sensorimotor gating, native locomotor activity, and dopaminergic innervation. Moreover, adolescent social isolation, an environmental stressor, failed to induce deficits in sociability or sensorimotor gating in adult KO mice. Thus, genetic removal of Arc/Arg3.1 per se does not cause schizophrenia-like behavior. Prenatal or perinatal deletion of Arc/Arg3.1 alters cortical network activity, however, without overtly disrupting the balance of excitation and inhibition in the brain and not promoting schizophrenia. Misregulation of Arc/Arg3.1 rather than deletion could potentially tip this balance and thereby promote emergence of schizophrenia and other neuropsychiatric disorders.SIGNIFICANCE STATEMENT The activity-regulated and memory-linked gene Arc/Arg3.1 has been implicated in the pathogenesis of schizophrenia, but direct evidence and a mechanistic link are still missing. The current study asks whether loss of Arc/Arg3.1 can affect brain circuitry and cause schizophrenia-like symptoms in mice. The findings demonstrate that genetic deletion of Arc/Arg3.1 before puberty alters synaptic function and prefrontal cortex activity. Although brain networks are disturbed, genetic deletion of Arc/Arg3.1 does not cause schizophrenia-like behavior, even when combined with an environmental insult. It remains to be seen whether misregulation of Arc/Arg3.1 might critically imbalance brain networks and lead to emergence of schizophrenia.


Asunto(s)
Proteínas del Citoesqueleto/genética , Proteínas del Tejido Nervioso/genética , Corteza Prefrontal/fisiopatología , Psicología del Esquizofrénico , Animales , Proteínas del Citoesqueleto/deficiencia , Neuronas Dopaminérgicas , Electroencefalografía/efectos de los fármacos , Potenciales Evocados , Potenciales Postsinápticos Excitadores , Femenino , Masculino , Memoria a Corto Plazo/efectos de los fármacos , Ratones , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Proteínas del Tejido Nervioso/deficiencia , Neuronas , Técnicas de Placa-Clamp , Reflejo de Sobresalto/efectos de los fármacos , Convulsiones/inducido químicamente , Convulsiones/genética , Filtrado Sensorial , Conducta Social
5.
Biol Chem ; 400(9): 1181-1189, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31095505

RESUMEN

Accumulation of ß-amyloid peptide (Aß) is regarded as a primary cause of Alzheimer's disease (AD). Aß is derived by sequential cleavage of the amyloid precursor protein (APP). Alterations in the subcellular targeting of APP are thought to affect the degree of Aß production. Sorting receptors, such as SorLA, convey subcellular targeting of APP. Dysfunction of SorLA, and likely of the related receptors SorCS1 and SorCS3, cause AD. Nevertheless, disease progression could also provoke altered expression of the receptors. Here, we assessed if Aß plaque formation promotes altered expression of SorLA, SorCS1 and SorCS3. We analyzed transcript levels during aging and after amyloidosis in brain areas characterized by early amyloid plaque formation in an AD mouse model (APPPS1) and wild types. We observed stable expression levels during aging (1-12 months). After plaque formation, SorCS1 and SorLA expression were markedly reduced in the frontal cerebral cortex and to a minor extent in the hippocampus, whereas SorCS3 expression was solely reduced in the frontal cerebral cortex. Our results indicate that disease progression, associated with Aß accumulation, can negatively regulate expression of the receptors.


Asunto(s)
Amiloidosis/genética , Regulación hacia Abajo , Proteínas de Transporte de Membrana/genética , Proteínas del Tejido Nervioso/genética , Receptores de Superficie Celular/genética , Receptores de LDL/genética , Enfermedad de Alzheimer/metabolismo , Amiloidosis/metabolismo , Animales , Encéfalo/metabolismo , Ratones , Ratones Transgénicos , ARN Mensajero/genética
6.
Transl Psychiatry ; 9(1): 7, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30664629

RESUMEN

In humans, genetic variants of DLGAP1-4 have been linked with neuropsychiatric conditions, including autism spectrum disorder (ASD). While these findings implicate the encoded postsynaptic proteins, SAPAP1-4, in the etiology of neuropsychiatric conditions, underlying neurobiological mechanisms are unknown. To assess the contribution of SAPAP4 to these disorders, we characterized SAPAP4-deficient mice. Our study reveals that the loss of SAPAP4 triggers profound behavioural abnormalities, including cognitive deficits combined with impaired vocal communication and social interaction, phenotypes reminiscent of ASD in humans. These behavioural alterations of SAPAP4-deficient mice are associated with dramatic changes in synapse morphology, function and plasticity, indicating that SAPAP4 is critical for the development of functional neuronal networks and that mutations in the corresponding human gene, DLGAP4, may cause deficits in social and cognitive functioning relevant to ASD-like neurodevelopmental disorders.


Asunto(s)
Trastorno del Espectro Autista/genética , Disfunción Cognitiva/genética , Proteínas del Tejido Nervioso/genética , Proteínas Asociadas a SAP90-PSD95/genética , Animales , Conducta Animal , Modelos Animales de Enfermedad , Femenino , Relaciones Interpersonales , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Conducta Social , Sinapsis/metabolismo
7.
Proc Natl Acad Sci U S A ; 115(49): 12531-12536, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30442670

RESUMEN

During early postnatal development, sensory regions of the brain undergo periods of heightened plasticity which sculpt neural networks and lay the foundation for adult sensory perception. Such critical periods were also postulated for learning and memory but remain elusive and poorly understood. Here, we present evidence that the activity-regulated and memory-linked gene Arc/Arg3.1 is transiently up-regulated in the hippocampus during the first postnatal month. Conditional removal of Arc/Arg3.1 during this period permanently alters hippocampal oscillations and diminishes spatial learning capacity throughout adulthood. In contrast, post developmental removal of Arc/Arg3.1 leaves learning and network activity patterns intact. Long-term memory storage continues to rely on Arc/Arg3.1 expression throughout life. These results demonstrate that Arc/Arg3.1 mediates a critical period for spatial learning, during which Arc/Arg3.1 fosters maturation of hippocampal network activity necessary for future learning and memory storage.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Hipocampo/fisiología , Memoria a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/metabolismo , Aprendizaje Espacial/fisiología , Animales , Conducta Animal , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas del Citoesqueleto/genética , Eliminación de Gen , Regulación de la Expresión Génica/fisiología , Ratones , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal , Neuronas/fisiología
8.
Artículo en Inglés | MEDLINE | ID: mdl-30104970

RESUMEN

Cortical computations rely on functionally diverse and highly dynamic synapses. How their structural composition affects synaptic transmission and plasticity and whether they support functional diversity remains rather unclear. Here, synaptic boutons on layer 5B (L5B) pyramidal neurons in the adult rat barrel cortex were investigated. Simultaneous patch-clamp recordings from synaptically connected L5B pyramidal neurons revealed great heterogeneity in amplitudes, coefficients of variation (CVs), and failures (F%) of EPSPs. Quantal analysis indicated multivesicular release as a likely source of this variability. Trains of EPSPs decayed with fast and slow time constants, presumably representing release from small readily releasable (RRP; 5.40 ± 1.24 synaptic vesicles) and large recycling (RP; 74 ± 21 synaptic vesicles) pools that were independent and highly variable at individual synaptic contacts (RRP range 1.2-12.8 synaptic vesicles; RP range 3.4-204 synaptic vesicles). Most presynaptic boutons (~85%) had a single, often perforated active zone (AZ) with a ~2 to 5-fold larger pre- (0.29 ± 0.19 µm2) and postsynaptic density (0.31 ± 0.21 µm2) when compared with even larger CNS synaptic boutons. They contained 200-3400 vesicles (mean ~800). At the AZ, ~4 and ~12 vesicles were located within a perimeter of 10 and 20 nm, reflecting docked and readily releasable vesicles of a putative RRP. Vesicles (~160) at 60-200 nm constituting the structural estimate of the presumed RP were ~2-fold larger than our functional estimate of the RP although both with a high variability. The remaining constituted a presumed large resting pool. Multivariate analysis revealed two clusters of L5B synaptic boutons distinguished by the size of their resting pool. Our functional and ultrastructural analyses closely link stationary properties, temporal dynamics and endurance of synaptic transmission to vesicular content and distribution within the presynaptic boutons suggesting that functional diversity of L5B synapses is enhanced by their structural heterogeneity.

9.
J Clin Invest ; 128(7): 3024-3040, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29889103

RESUMEN

Medial vascular calcification, associated with enhanced mortality in chronic kidney disease (CKD), is fostered by osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs). Here, we describe that serum- and glucocorticoid-inducible kinase 1 (SGK1) was upregulated in VSMCs under calcifying conditions. In primary human aortic VSMCs, overexpression of constitutively active SGK1S422D, but not inactive SGK1K127N, upregulated osteo-/chondrogenic marker expression and activity, effects pointing to increased osteo-/chondrogenic transdifferentiation. SGK1S422D induced nuclear translocation and increased transcriptional activity of NF-κB. Silencing or pharmacological inhibition of IKK abrogated the osteoinductive effects of SGK1S422D. Genetic deficiency, silencing, and pharmacological inhibition of SGK1 dissipated phosphate-induced calcification and osteo-/chondrogenic transdifferentiation of VSMCs. Aortic calcification, stiffness, and osteo-/chondrogenic transdifferentiation in mice following cholecalciferol overload were strongly reduced by genetic knockout or pharmacological inhibition of Sgk1 by EMD638683. Similarly, Sgk1 deficiency blunted vascular calcification in apolipoprotein E-deficient mice after subtotal nephrectomy. Treatment of human aortic smooth muscle cells with serum from uremic patients induced osteo-/chondrogenic transdifferentiation, effects ameliorated by EMD638683. These observations identified SGK1 as a key regulator of vascular calcification. SGK1 promoted vascular calcification, at least partly, via NF-κB activation. Inhibition of SGK1 may, thus, reduce the burden of vascular calcification in CKD.


Asunto(s)
Proteínas Inmediatas-Precoces/metabolismo , Miocitos del Músculo Liso/metabolismo , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Calcificación Vascular/metabolismo , Animales , Benzamidas/farmacología , Transdiferenciación Celular/efectos de los fármacos , Transdiferenciación Celular/genética , Transdiferenciación Celular/fisiología , Células Cultivadas , Condrogénesis/efectos de los fármacos , Condrogénesis/genética , Condrogénesis/fisiología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Hidrazinas/farmacología , Proteínas Inmediatas-Precoces/deficiencia , Proteínas Inmediatas-Precoces/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Noqueados para ApoE , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Osteogénesis/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Insuficiencia Renal/metabolismo , Insuficiencia Renal/patología , Transducción de Señal , Calcificación Vascular/etiología , Calcificación Vascular/patología
10.
Int J Biochem Cell Biol ; 91(Pt B): 184-193, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28591617

RESUMEN

Activity-regulated gene transcription underlies plasticity-dependent changes in the molecular composition and structure of neurons. Numerous genes whose expression is induced by different neuronal plasticity inducing pathways have been identified, but the alteration of gene expression levels represents only part of the complexity of the activity-regulated transcriptional program. Alternative splicing of precursor mRNA is an additional mechanism that modulates the activity-dependent transcriptional signature. Recently developed splicing sensitive transcriptome wide analyses improve our understanding of the underlying mechanisms and demonstrate to what extend the activity regulated transcriptome is alternatively spliced. So far, only for a small group of differentially spliced mRNAs of synaptic proteins, the functional implications have been studied in detail. These include examples in which differential exon usage can result in the expression of alternative proteins which interfere with or alter the function of preexisting proteins and cause a dominant negative functional block of constitutively expressed variants. Such altered proteins contribute to the structural and functional reorganization of pre- and postsynaptic terminals and to the maintenance and formation of synapses. In addition, activity-induced alternative splicing can affect the untranslated regions (UTRs) and generates mRNAs harboring different cis-regulatory elements. Such differential UTRs can influence mRNA stability, translation, and can change the targeting of mRNAs to subcellular compartments. Here, we summarize different categories of alternative splicing which are thought to contribute to synaptic remodeling, give an overview of activity-regulated alternatively spliced mRNAs of synaptic proteins that impact synaptic functions, and discuss splicing factors and epigenetic modifications as regulatory determinants.


Asunto(s)
Empalme Alternativo , Neuronas/citología , Neuronas/metabolismo , ARN Mensajero/genética , Animales , Exones/genética , Humanos
11.
Sci Rep ; 7: 45101, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28349920

RESUMEN

Activity-dependent alteration of the transcriptional program is central for shaping neuronal connectivity. Constitutively expressed transcription factors orchestrate the initial response to neuronal stimulation and serve as substrates for second messenger-regulated kinase signalling cascades. The mitogen-activated protein kinase ERK conveys signalling from the synapse to the nucleus but its genetic signature following neuronal activity has not been revealed. The goal of the present study was to identify ERK dependent and independent activity regulated transcriptional programs in the murine hippocampus. We used generalized seizures combined with the pharmacological intervention of MEK activation as an in vivo model to determine the complete transcriptional program initiated by ERK after neuronal activity. Our survey demonstrates that the induction of a large number of activity-regulated genes, including Arc/Arg3.1, Arl5b, Gadd45b, Homer1, Inhba and Zwint, is indeed dependent on ERK phosphorylation. In contrast, expression of a small group of genes, including Npas4, Arl4d, Errfi1, and Rgs2, is only partially dependent or completely independent (Ppp1r15a) of this signalling pathway. Among the identified transcripts are long non-coding (lnc) RNAs and induction of LincPint and splice variants of NEAT1 are ERK dependent. Our survey provides a comprehensive analysis of the transcriptomic response conveyed by ERK signalling in the hippocampus.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica , Hipocampo/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Activación Transcripcional , Empalme Alternativo , Animales , Giro Dentado/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Hibridación in Situ , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Neuronas/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , ARN Largo no Codificante/genética , Convulsiones/tratamiento farmacológico , Convulsiones/etiología , Convulsiones/metabolismo , Convulsiones/fisiopatología , Transcriptoma
13.
Am J Physiol Renal Physiol ; 312(1): F65-F76, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27413200

RESUMEN

We examined renal Na and K transporters in mice with deletions in the gene encoding the aldosterone-induced protein SGK1. The knockout mice were hyperkalemic, and had altered expression of the subunits of the epithelial Na channel (ENaC). The kidneys showed decreased expression of the cleaved forms of the γENaC subunit, and the fully glycosylated form of the ßENaC subunits when animals were fed a high-K diet. Knockout animals treated with exogenous aldosterone also had reduced subunit processing and diminished surface expression of ßENaC and γENaC. Expression of the three upstream Na transporters NHE3, NKCC2, and NCC was reduced in both wild-type and knockout mice in response to K loading. The activity of ENaC measured as whole cell amiloride-sensitive current (INa) in principal cells of the cortical collecting duct (CCD) was minimal under control conditions but was increased by a high-K diet to a similar extent in knockout and wild-type animals. INa in the connecting tubule also increased similarly in the two genotypes in response to exogenous aldosterone administration. The activities of both ROMK channels in principal cells and BK channels in intercalated cells of the CCD were unaffected by the deletion of SGK1. Acute treatment of animals with amiloride produced similar increases in Na excretion and decreases in K excretion in the two genotypes. The absence of changes in ENaC activity suggests compensation for decreased surface expression. Altered K balance in animals lacking SGK1 may reflect defects in ENaC-independent K excretion.


Asunto(s)
Amilorida/metabolismo , Canales Epiteliales de Sodio/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Potasio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Sodio en la Dieta/metabolismo , Aldosterona/farmacología , Animales , Proteínas Inmediatas-Precoces/genética , Riñón/metabolismo , Túbulos Renales Colectores/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología
14.
J Neurochem ; 139(3): 456-470, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27453211

RESUMEN

Juvenile neuronal ceroid lipofuscinosis, the most common neurodegenerative disease affecting children, is caused by mutations of the CLN3 gene encoding CLN3, a transmembrane protein with so far undefined function. The embryonic expression of the gene has not been studied in detail before. Moreover, the protein CLN3 was mostly localized on the subcellular level to lysosomes but the exclusiveness is still under debate. Here, we analyze the expression pattern of murine CLN3 at different developmental stages by in situ hybridizations. We observe expression maxima in the developing thalamus and cerebral cortex and outside of the central nervous system in the gastrointestinal tract and other peripheral organs. In differentiated primary neurons, the protein CLN3 shows mainly a somatodendritic localization. In primary neurons, we thoroughly revisit the subcellular localization of CLN3 and find a predominant localization in late endosomal-lysosomal compartments. Moreover, we expressed the major mutant form of CLN3 - CLN3deltaExon7/8 - in neurons and demonstrate that it is retained in the endoplasmatic reticulum. Time-lapse microscopy analysis of neurons revealed co-trafficking of CLN3 with the late endosomal marker Rab7, but not with the early endosomal marker Rab5. Furthermore, a constitutive active mutant of Rab7 traps CLN3 in enlarged endosomes. Our subcellular localization study in neurons refines the localization and subcellular targeting of CLN3 to late endosomal-lysosomal compartments and provides information on the velocity of CLN3 in living neurons which has not been investigated before.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Lipofuscinosis Ceroideas Neuronales/metabolismo , Animales , Diferenciación Celular , Corteza Cerebral/metabolismo , Células Dendríticas/metabolismo , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Endosomas/ultraestructura , Femenino , Lisosomas/enzimología , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Chaperonas Moleculares/genética , Mutación/genética , Lipofuscinosis Ceroideas Neuronales/genética , Embarazo , Fracciones Subcelulares/metabolismo , Tálamo/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
15.
Neurobiol Learn Mem ; 131: 155-65, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27038743

RESUMEN

The activity-regulated cytoskeletal-associated protein/activity regulated gene (Arc/Arg3.1) is crucial for long-term synaptic plasticity and memory formation. However, the neurophysiological substrates of memory deficits occurring in the absence of Arc/Arg3.1 are unknown. We compared hippocampal CA1 single-unit and local field potential (LFP) activity in Arc/Arg3.1 knockout and wild-type mice during track running and flanking sleep periods. Locomotor activity, basic firing and spatial coding properties of CA1 cells in knockout mice were not different from wild-type mice. During active behavior, however, knockout animals showed a significantly shifted balance in LFP power, with a relative loss in high-frequency (beta-2 and gamma) bands compared to low-frequency bands. Moreover, during track-running, knockout mice showed a decrease in phase locking of spiking activity to LFP oscillations in theta, beta and gamma bands. Sleep architecture in knockout mice was not grossly abnormal. Sharp-wave ripples, which have been associated with memory consolidation and replay, showed only minor differences in dynamics and amplitude. Altogether, these findings suggest that Arc/Arg3.1 effects on memory formation are not only manifested at the level of molecular pathways regulating synaptic plasticity, but also at the systems level. The disrupted power balance in theta, beta and gamma rhythmicity and concomitant loss of spike-field phase locking may affect memory encoding during initial storage and memory consolidation stages.


Asunto(s)
Región CA1 Hipocampal/fisiología , Proteínas del Citoesqueleto/fisiología , Sincronización de Fase en Electroencefalografía/fisiología , Ritmo Gamma/fisiología , Memoria/fisiología , Actividad Motora/fisiología , Proteínas del Tejido Nervioso/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sueño/fisiología , Animales , Genes Inmediatos-Precoces , Ratones , Ratones Noqueados
16.
Cell Rep ; 15(5): 968-977, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27117409

RESUMEN

The kinesin KIF21B is implicated in several human neurological disorders, including delayed cognitive development, yet it remains unclear how KIF21B dysfunction may contribute to pathology. One limitation is that relatively little is known about KIF21B-mediated physiological functions. Here, we generated Kif21b knockout mice and used cellular assays to investigate the relevance of KIF21B in neuronal and in vivo function. We show that KIF21B is a processive motor protein and identify an additional role for KIF21B in regulating microtubule dynamics. In neurons lacking KIF21B, microtubules grow more slowly and persistently, leading to tighter packing in dendrites. KIF21B-deficient neurons exhibit decreased dendritic arbor complexity and reduced spine density, which correlate with deficits in synaptic transmission. Consistent with these observations, Kif21b-null mice exhibit behavioral changes involving learning and memory deficits. Our study provides insight into the cellular function of KIF21B and the basis for cognitive decline resulting from KIF21B dysregulation.


Asunto(s)
Forma de la Célula , Cinesinas/metabolismo , Memoria/fisiología , Microtúbulos/metabolismo , Neuronas/citología , Sinapsis/metabolismo , Animales , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Marcación de Gen , Células HeLa , Humanos , Cinesinas/deficiencia , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Ratones Noqueados , Microtúbulos/ultraestructura , Neuronas/metabolismo , Neuronas/ultraestructura , Reproducibilidad de los Resultados
17.
Sci Rep ; 6: 21222, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26888068

RESUMEN

Adult neurogenesis in the hippocampus is a remarkable phenomenon involved in various aspects of learning and memory as well as disease pathophysiology. Brain-derived neurotrophic factor (BDNF) represents a major player in the regulation of this unique form of neuroplasticity, yet the mechanisms underlying its pro-neurogenic actions remain unclear. Here, we examined the effects associated with brief (25 min), unilateral infusion of BDNF in the rat dentate gyrus. Acute BDNF infusion induced long-term potentiation (LTP) of medial perforant path-evoked synaptic transmission and, concomitantly, enhanced hippocampal neurogenesis bilaterally, reflected by increased dentate gyrus BrdU + cell numbers. Importantly, inhibition of activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) translation through local, unilateral infusion of anti-sense oligodeoxynucleotides (ArcAS) prior to BDNF infusion blocked both BDNF-LTP induction and the associated pro-neurogenic effects. Notably, basal rates of proliferation and newborn cell survival were unaltered in homozygous Arc/Arg3.1 knockout mice. Taken together these findings link the pro-neurogenic effects of acute BDNF infusion to induction of Arc/Arg3.1-dependent LTP in the adult rodent dentate gyrus.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Proteínas del Citoesqueleto/metabolismo , Giro Dentado/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Potenciales Evocados/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley
18.
Sci Immunol ; 1(3): eaaf8665, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-28783680

RESUMEN

Skin-migratory dendritic cells (migDCs) are pivotal antigen-presenting cells that continuously transport antigens to draining lymph nodes and regulate immune responses. However, identification of migDCs is complicated by the lack of distinguishing markers, and it remains unclear which molecules determine their migratory capacity during inflammation. We show that, in the skin, the neuronal plasticity molecule activity-regulated cytoskeleton-associated protein/activity-regulated gene 3.1 (Arc/Arg3.1) was strictly confined to migDCs. Mechanistically, Arc/Arg3.1 was required for accelerated DC migration during inflammation because it regulated actin dynamics through nonmuscle myosin II. Accordingly, Arc/Arg3.1-dependent DC migration was critical for mounting T cell responses in experimental autoimmune encephalomyelitis and allergic contact dermatitis. Thus, Arc/Arg3.1 was restricted to migDCs in the skin and drove fast DC migration by exclusively coordinating cytoskeletal changes in response to inflammatory challenges. These findings commend Arc/Arg3.1 as a universal switch in migDCs that may be exploited to selectively modify immune responses.

19.
J Neurochem ; 135(1): 60-75, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26119586

RESUMEN

Processing of amyloid precursor protein (APP) into amyloid-ß peptide (Aß) is crucial for the development of Alzheimer's disease (AD). Because this processing is highly dependent on its intracellular itinerary, altered subcellular targeting of APP is thought to directly affect the degree to which Aß is generated. The sorting receptor SorCS1 has been genetically linked to AD, but the underlying molecular mechanisms are poorly understood. We analyze two SorCS1 variants; one, SorCS1c, conveys internalization of surface-bound ligands whereas the other, SorCS1b, does not. In agreement with previous studies, we demonstrate co-immunoprecipitation and co-localization of both SorCS1 variants with APP. Our results suggest that SorCS1c and APP are internalized independently, although they mostly share a common post-endocytic pathway. We introduce functional Venus-tagged constructs to study SorCS1b and SorCS1c in living cells. Both variants are transported by fast anterograde axonal transport machinery and about 30% of anterograde APP-positive transport vesicles contain SorCS1. Co-expression of SorCS1b caused no change of APP transport kinetics, but SorCS1c reduced the anterograde transport rate of APP and increased the number of APP-positive stationary vesicles. These data suggest that SorCS1 and APP share trafficking pathways and that SorCS1c can retain APP from insertion into anterograde transport vesicles. Altered APP trafficking is thought to modulate its processing. SorCS1 has been suggested to function in APP trafficking. We analyzed if the two SorCS1 variants, SorCS1b and SorCS1c, tie APP to the cell surface or modify its internalization and intracellular targeting. We observed co-localization and vesicular co-transport of APP and SorCS1, but independent internalization and sorting through a common post-endocytic pathway. Co-expression of one variant, SorCS1c, reduced anterograde APP transport. These data demonstrate that SorCS1 and APP share trafficking pathways and that SorCS1c can retain APP from insertion into anterograde transport vesicles.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Neuronas/metabolismo , Receptores de Superficie Celular/metabolismo , Simportadores/metabolismo , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Citoplasma/metabolismo , Ratones , Transporte de Proteínas/fisiología , Receptores de Superficie Celular/genética
20.
Arterioscler Thromb Vasc Biol ; 35(3): 547-57, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25614279

RESUMEN

OBJECTIVE: Atherosclerosis, an inflammatory disease of arterial vessel walls, requires migration and matrix metalloproteinase (MMP)-9-dependent invasion of monocytes/macrophages into the vascular wall. MMP-9 expression is stimulated by transcription factor nuclear factor-κB, which is regulated by inhibitor κB (IκB) and thus IκB kinase. Regulators of nuclear factor-κB include serum- and glucocorticoid-inducible kinase 1 (SGK1). The present study explored involvement of SGK1 in vascular inflammation and atherogenesis. APPROACH AND RESULTS: Gene-targeted apolipoprotein E (ApoE)-deficient mice without (apoe(-/-)sgk1(+/+)) or with (apoe(-/-)sgk1(-/-)) additional SGK1 knockout received 16-week cholesterol-rich diet. According to immunohistochemistry atherosclerotic lesions in aorta and carotid artery, vascular CD45(+) leukocyte infiltration, Mac-3(+) macrophage infiltration, vascular smooth muscle cell content, MMP-2, and MMP-9 positive areas in atherosclerotic tissue were significantly less in apoe(-/-)sgk1(-/-)mice than in apoe(-/-)sgk1(+/+)mice. As determined by Boyden chamber, thioglycollate-induced peritonitis and air pouch model, migration of SGK1-deficient CD11b(+)F4/80(+) macrophages was significantly diminished in vitro and in vivo. Zymographic MMP-2 and MMP-9 production, MMP-9 activity and invasion through matrigel in vitro were significantly less in sgk1(-/-) than in sgk1(+/+)macrophages and in control plasmid-transfected or inactive (K127N)SGK1-transfected than in constitutively active (S422D)SGK1-transfected THP-1 cells. Confocal microscopy revealed reduced macrophage number and macrophage MMP-9 content in plaques of apoe(-/-)sgk1(-/-) mice. In THP-1 cells, MMP-inhibitor GM6001 (25 µmol/L) abrogated (S422D)SGK1-induced MMP-9 production and invasion. According to reverse transcription polymerase chain reaction, MMP-9 transcript levels were significantly reduced in sgk1(-/-)macrophages and strongly upregulated in (S422D)SGK1-transfected THP-1 cells compared with control plasmid-transfected or (K127N)SGK1-transfected THP-1 cells. According to immunoblotting and confocal microscopy, phosphorylation of IκB kinase and inhibitor κB and nuclear translocation of p50 were significantly lower in sgk1(-/-)macrophages than in sgk1(+/+)macrophages and significantly higher in (S422D)SGK1-transfected THP-1 cells than in control plasmid-transfected or (K127N)SGK1-transfected THP-1 cells. Treatment of (S422D)SGK1-transfected THP-1 cells with IκB kinase-inhibitor BMS-345541 (10 µmol/L) abolished (S422D)SGK1-induced increase of MMP-9 transcription and gelatinase activity. CONCLUSIONS: SGK1 plays a pivotal role in vascular inflammation during atherogenesis. SGK1 participates in the regulation of monocyte/macrophage migration and MMP-9 transcription via regulation of nuclear factor-κB.


Asunto(s)
Enfermedades de la Aorta/enzimología , Aterosclerosis/enzimología , Enfermedades de las Arterias Carótidas/enzimología , Quimiotaxis , Proteínas Inmediatas-Precoces/metabolismo , Inflamación/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte Activo de Núcleo Celular , Animales , Aorta/enzimología , Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/patología , Arterias Carótidas/enzimología , Arterias Carótidas/patología , Enfermedades de las Arterias Carótidas/genética , Enfermedades de las Arterias Carótidas/patología , Línea Celular , Modelos Animales de Enfermedad , Regulación Enzimológica de la Expresión Génica , Humanos , Quinasa I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Proteínas Inmediatas-Precoces/deficiencia , Proteínas Inmediatas-Precoces/genética , Inflamación/genética , Inflamación/patología , Macrófagos/enzimología , Macrófagos/patología , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Subunidad p50 de NF-kappa B/metabolismo , Peritonitis/inducido químicamente , Peritonitis/enzimología , Peritonitis/genética , Placa Aterosclerótica , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Tioglicolatos , Transcripción Genética , Transfección , Remodelación Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA