Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 13530, 2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598245

RESUMEN

In the northern forelands of the Alps, farmers report an increase of Jacobaea aquatica in production grasslands. Due to its toxicity, the species affects grassland productivity and calls for costly control measures. We are investigating the extent to which management practices or climatic factors are responsible for the increase of the species and how the situation will change due to climate change. We tested for effects of management intensity, fertilization, agri-environmental measures, and soil disturbance, and modeled the occurrence of the species under rcp4.5 and rcp8.5 scenarios. The main determinants of the occurrence of the species are soil type and summer rainfall. A high risk is associated with wet soils and > 400 mm of rain between June and August; an influence of the management-related factors could not be detected. Under the climate-change scenarios, the overall distribution decreases and shifts to the wetter alpine regions. Thus, the current increase is rather a shift in the occurrence of the species due to the altered precipitation situation. Under future climatic conditions, the species will decline and retreat to higher regions in the Alps. This will decrease the risk of forage contamination for production grassland in the lowlands.


Asunto(s)
Síndrome Linfoproliferativo Autoinmune , Plantas Tóxicas , Pradera , Lluvia , Suelo
2.
Sci Data ; 9(1): 631, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36261458

RESUMEN

Vegetation-plot resurvey data are a main source of information on terrestrial biodiversity change, with records reaching back more than one century. Although more and more data from re-sampled plots have been published, there is not yet a comprehensive open-access dataset available for analysis. Here, we compiled and harmonised vegetation-plot resurvey data from Germany covering almost 100 years. We show the distribution of the plot data in space, time and across habitat types of the European Nature Information System (EUNIS). In addition, we include metadata on geographic location, plot size and vegetation structure. The data allow temporal biodiversity change to be assessed at the community scale, reaching back further into the past than most comparable data yet available. They also enable tracking changes in the incidence and distribution of individual species across Germany. In summary, the data come at a level of detail that holds promise for broadening our understanding of the mechanisms and drivers behind plant diversity change over the last century.


Asunto(s)
Biodiversidad , Ecosistema , Alemania , Plantas
3.
Nature ; 611(7936): 512-518, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36261519

RESUMEN

Long-term analyses of biodiversity data highlight a 'biodiversity conservation paradox': biological communities show substantial species turnover over the past century1,2, but changes in species richness are marginal1,3-5. Most studies, however, have focused only on the incidence of species, and have not considered changes in local abundance. Here we asked whether analysing changes in the cover of plant species could reveal previously unrecognized patterns of biodiversity change and provide insights into the underlying mechanisms. We compiled and analysed a dataset of 7,738 permanent and semi-permanent vegetation plots from Germany that were surveyed between 2 and 54 times from 1927 to 2020, in total comprising 1,794 species of vascular plants. We found that decrements in cover, averaged across all species and plots, occurred more often than increments; that the number of species that decreased in cover was higher than the number of species that increased; and that decrements were more equally distributed among losers than were gains among winners. Null model simulations confirmed that these trends do not emerge by chance, but are the consequence of species-specific negative effects of environmental changes. In the long run, these trends might result in substantial losses of species at both local and regional scales. Summarizing the changes by decade shows that the inequality in the mean change in species cover of losers and winners diverged as early as the 1960s. We conclude that changes in species cover in communities represent an important but understudied dimension of biodiversity change that should more routinely be considered in time-series analyses.


Asunto(s)
Biodiversidad , Plantas , Alemania , Plantas/clasificación , Especificidad de la Especie , Factores de Tiempo , Conjuntos de Datos como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...