Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Front Genet ; 14: 1235337, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38028628

RESUMEN

Introduction: Educational attainment, widely used in epidemiologic studies as a surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes. Methods: A two-stage genome-wide meta-analysis of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG) levels was performed while accounting for gene-educational attainment interactions in up to 226,315 individuals from five population groups. We considered two educational attainment variables: "Some College" (yes/no, for any education beyond high school) and "Graduated College" (yes/no, for completing a 4-year college degree). Genome-wide significant (p < 5 × 10-8) and suggestive (p < 1 × 10-6) variants were identified in Stage 1 (in up to 108,784 individuals) through genome-wide analysis, and those variants were followed up in Stage 2 studies (in up to 117,531 individuals). Results: In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci (nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2 DF) joint tests of main and interaction effects. Four loci showed significant interaction with educational attainment. Two loci were significant only in cross-population analyses. Several loci include genes with known or suggested roles in adipose (FOXP1, MBOAT4, SKP2, STIM1, STX4), brain (BRI3, FILIP1, FOXP1, LINC00290, LMTK2, MBOAT4, MYO6, SENP6, SRGAP3, STIM1, TMEM167A, TMEM30A), and liver (BRI3, FOXP1) biology, highlighting the potential importance of brain-adipose-liver communication in the regulation of lipid metabolism. An investigation of the potential druggability of genes in identified loci resulted in five gene targets shown to interact with drugs approved by the Food and Drug Administration, including genes with roles in adipose and brain tissue. Discussion: Genome-wide interaction analysis of educational attainment identified novel lipid loci not previously detected by analyses limited to main genetic effects.

2.
Mol Psychiatry ; 28(9): 3874-3887, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37495887

RESUMEN

Metabolome reflects the interplay of genome and exposome at molecular level and thus can provide deep insights into the pathogenesis of a complex disease like major depression. To identify metabolites associated with depression we performed a metabolome-wide association analysis in 13,596 participants from five European population-based cohorts characterized for depression, and circulating metabolites using ultra high-performance liquid chromatography/tandem accurate mass spectrometry (UHPLC/MS/MS) based Metabolon platform. We tested 806 metabolites covering a wide range of biochemical processes including those involved in lipid, amino-acid, energy, carbohydrate, xenobiotic and vitamin metabolism for their association with depression. In a conservative model adjusting for life style factors and cardiovascular and antidepressant medication use we identified 8 metabolites, including 6 novel, significantly associated with depression. In individuals with depression, increased levels of retinol (vitamin A), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) (lecithin) and mannitol/sorbitol and lower levels of hippurate, 4-hydroxycoumarin, 2-aminooctanoate (alpha-aminocaprylic acid), 10-undecenoate (11:1n1) (undecylenic acid), 1-linoleoyl-GPA (18:2) (lysophosphatidic acid; LPA 18:2) are observed. These metabolites are either directly food derived or are products of host and gut microbial metabolism of food-derived products. Our Mendelian randomization analysis suggests that low hippurate levels may be in the causal pathway leading towards depression. Our findings highlight putative actionable targets for depression prevention that are easily modifiable through diet interventions.


Asunto(s)
Depresión , Espectrometría de Masas en Tándem , Humanos , Depresión/metabolismo , Dieta , Metaboloma/genética , Vitamina A/metabolismo , Hipuratos , Metabolómica/métodos
3.
Thyroid ; 33(3): 301-311, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36719767

RESUMEN

Background: Thyroid hormones play a key role in differentiation and metabolism and are known regulators of gene expression through both genomic and epigenetic processes including DNA methylation. The aim of this study was to examine associations between thyroid hormones and DNA methylation. Methods: We carried out a fixed-effect meta-analysis of epigenome-wide association study (EWAS) of blood DNA methylation sites from 8 cohorts from the ThyroidOmics Consortium, incorporating up to 7073 participants of both European and African ancestry, implementing a discovery and replication stage. Statistical analyses were conducted using normalized beta CpG values as dependent and log-transformed thyrotropin (TSH), free thyroxine, and free triiodothyronine levels, respectively, as independent variable in a linear model. The replicated findings were correlated with gene expression levels in whole blood and tested for causal influence of TSH and free thyroxine by two-sample Mendelian randomization (MR). Results: Epigenome-wide significant associations (p-value <1.1E-7) of three CpGs for free thyroxine, five for free triiodothyronine, and two for TSH concentrations were discovered and replicated (combined p-values = 1.5E-9 to 4.3E-28). The associations included CpG sites annotated to KLF9 (cg00049440) and DOT1L (cg04173586) that overlap with all three traits, consistent with hypothalamic-pituitary-thyroid axis physiology. Significant associations were also found for CpGs in FKBP5 for free thyroxine, and at CSNK1D/LINCO1970 and LRRC8D for free triiodothyronine. MR analyses supported a causal effect of thyroid status on DNA methylation of KLF9. DNA methylation of cg00049440 in KLF9 was inversely correlated with KLF9 gene expression in blood. The CpG at CSNK1D/LINC01970 overlapped with thyroid hormone receptor alpha binding peaks in liver cells. The total additive heritability of the methylation levels of the six significant CpG sites was between 25% and 57%. Significant methylation QTLs were identified for CpGs at KLF9, FKBP5, LRRC8D, and CSNK1D/LINC01970. Conclusions: We report novel associations between TSH, thyroid hormones, and blood-based DNA methylation. This study advances our understanding of thyroid hormone action particularly related to KLF9 and serves as a proof-of-concept that integrations of EWAS with other -omics data can provide a valuable tool for unraveling thyroid hormone signaling in humans by complementing and feeding classical in vitro and animal studies.


Asunto(s)
Epigenoma , Triyodotironina , Humanos , Glándula Tiroides , Tiroxina/genética , Islas de CpG , Estudio de Asociación del Genoma Completo , Factores de Transcripción de Tipo Kruppel/genética
4.
Nat Genet ; 54(1): 18-29, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34980917

RESUMEN

We determined the relationships between DNA sequence variation and DNA methylation using blood samples from 3,799 Europeans and 3,195 South Asians. We identify 11,165,559 SNP-CpG associations (methylation quantitative trait loci (meQTL), P < 10-14), including 467,915 meQTL that operate in trans. The meQTL are enriched for functionally relevant characteristics, including shared chromatin state, High-throuhgput chromosome conformation interaction, and association with gene expression, metabolic variation and clinical traits. We use molecular interaction and colocalization analyses to identify multiple nuclear regulatory pathways linking meQTL loci to phenotypic variation, including UBASH3B (body mass index), NFKBIE (rheumatoid arthritis), MGA (blood pressure) and COMMD7 (white cell counts). For rs6511961 , chromatin immunoprecipitation followed by sequencing (ChIP-seq) validates zinc finger protein (ZNF)333 as the likely trans acting effector protein. Finally, we used interaction analyses to identify population- and lineage-specific meQTL, including rs174548 in FADS1, with the strongest effect in CD8+ T cells, thus linking fatty acid metabolism with immune dysregulation and asthma. Our study advances understanding of the potential pathways linking genetic variation to human phenotype.


Asunto(s)
Metilación de ADN/genética , Variación Genética , Artritis Reumatoide/genética , Asia , Presión Sanguínea/genética , Índice de Masa Corporal , Linfocitos T CD8-positivos/metabolismo , Islas de CpG , Replicación del ADN , Europa (Continente) , Estudio de Asociación del Genoma Completo , Humanos , Leucocitos/metabolismo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
5.
HGG Adv ; 2(1)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-34734193

RESUMEN

Psychological and social factors are known to influence blood pressure (BP) and risk of hypertension and associated cardiovascular diseases. To identify novel BP loci, we carried out genome-wide association meta-analyses of systolic, diastolic, pulse, and mean arterial BP taking into account the interaction effects of genetic variants with three psychosocial factors: depressive symptoms, anxiety symptoms, and social support. Analyses were performed using a two-stage design in a sample of up to 128,894 adults from 5 ancestry groups. In the combined meta-analyses of Stages 1 and 2, we identified 59 loci (p value <5e-8), including nine novel BP loci. The novel associations were observed mostly with pulse pressure, with fewer observed with mean arterial pressure. Five novel loci were identified in African ancestry, and all but one showed patterns of interaction with at least one psychosocial factor. Functional annotation of the novel loci supports a major role for genes implicated in the immune response (PLCL2), synaptic function and neurotransmission (LIN7A, PFIA2), as well as genes previously implicated in neuropsychiatric or stress-related disorders (FSTL5, CHODL). These findings underscore the importance of considering psychological and social factors in gene discovery for BP, especially in non-European populations.

6.
Clin Epigenetics ; 13(1): 143, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294131

RESUMEN

BACKGROUND: Non-coding RNA 886 (nc886) is coded from a maternally inherited metastable epiallele. We set out to investigate the determinants and dynamics of the methylation pattern at the nc886 epiallele and how this methylation status associates with nc886 RNA expression. Furthermore, we investigated the associations between the nc886 methylation status or the levels of nc886 RNAs and metabolic traits in the YFS and KORA cohorts. The association between nc886 epiallele methylation and RNA expression was also validated in induced pluripotent stem cell (iPSC) lines. RESULTS: We confirm that the methylation status of the nc886 epiallele is mostly binomial, with individuals displaying either a non- or hemi-methylated status, but we also describe intermediately and close to fully methylated individuals. We show that an individual's methylation status is associated with the mother's age and socioeconomic status, but not with the individual's own genetics. Once established, the methylation status of the nc886 epiallele remains stable for at least 25 years. This methylation status is strongly associated with the levels of nc886 non-coding RNAs in serum, blood, and iPSC lines. In addition, nc886 methylation status associates with glucose and insulin levels during adolescence but not with the indicators of glucose metabolism or the incidence of type 2 diabetes in adulthood. However, the nc886-3p RNA levels also associate with glucose metabolism in adulthood. CONCLUSIONS: These results indicate that nc886 metastable epiallele methylation is tuned by the periconceptional conditions and it associates with glucose metabolism through the expression of the ncRNAs coded in the epiallele region.


Asunto(s)
Trastornos del Metabolismo de la Glucosa/genética , ARN no Traducido/análisis , Adulto , Metilación de ADN/genética , Metilación de ADN/fisiología , Epigénesis Genética , Humanos
7.
Nat Commun ; 12(1): 2830, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990564

RESUMEN

Coffee and tea are extensively consumed beverages worldwide which have received considerable attention regarding health. Intake of these beverages is consistently linked to, among others, reduced risk of diabetes and liver diseases; however, the mechanisms of action remain elusive. Epigenetics is suggested as a mechanism mediating the effects of dietary and lifestyle factors on disease onset. Here we report the results from epigenome-wide association studies (EWAS) on coffee and tea consumption in 15,789 participants of European and African-American ancestries from 15 cohorts. EWAS meta-analysis of coffee consumption reveals 11 CpGs surpassing the epigenome-wide significance threshold (P-value <1.1×10-7), which annotated to the AHRR, F2RL3, FLJ43663, HDAC4, GFI1 and PHGDH genes. Among them, cg14476101 is significantly associated with expression of the PHGDH and risk of fatty liver disease. Knockdown of PHGDH expression in liver cells shows a correlation with expression levels of genes associated with circulating lipids, suggesting a role of PHGDH in hepatic-lipid metabolism. EWAS meta-analysis on tea consumption reveals no significant association, only two CpGs annotated to CACNA1A and PRDM16 genes show suggestive association (P-value <5.0×10-6). These findings indicate that coffee-associated changes in DNA methylation levels may explain the mechanism of action of coffee consumption in conferring risk of diseases.


Asunto(s)
Café/efectos adversos , Metilación de ADN , Epigenoma , Té/efectos adversos , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Islas de CpG , Epigénesis Genética , Femenino , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Humanos , Hígado/enzimología , Masculino , Persona de Mediana Edad , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Fosfoglicerato-Deshidrogenasa/genética , Factores de Riesgo
8.
Mol Psychiatry ; 26(11): 6293-6304, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33859359

RESUMEN

Long and short sleep duration are associated with elevated blood pressure (BP), possibly through effects on molecular pathways that influence neuroendocrine and vascular systems. To gain new insights into the genetic basis of sleep-related BP variation, we performed genome-wide gene by short or long sleep duration interaction analyses on four BP traits (systolic BP, diastolic BP, mean arterial pressure, and pulse pressure) across five ancestry groups in two stages using 2 degree of freedom (df) joint test followed by 1df test of interaction effects. Primary multi-ancestry analysis in 62,969 individuals in stage 1 identified three novel gene by sleep interactions that were replicated in an additional 59,296 individuals in stage 2 (stage 1 + 2 Pjoint < 5 × 10-8), including rs7955964 (FIGNL2/ANKRD33) that increases BP among long sleepers, and rs73493041 (SNORA26/C9orf170) and rs10406644 (KCTD15/LSM14A) that increase BP among short sleepers (Pint < 5 × 10-8). Secondary ancestry-specific analysis identified another novel gene by long sleep interaction at rs111887471 (TRPC3/KIAA1109) in individuals of African ancestry (Pint = 2 × 10-6). Combined stage 1 and 2 analyses additionally identified significant gene by long sleep interactions at 10 loci including MKLN1 and RGL3/ELAVL3 previously associated with BP, and significant gene by short sleep interactions at 10 loci including C2orf43 previously associated with BP (Pint < 10-3). 2df test also identified novel loci for BP after modeling sleep that has known functions in sleep-wake regulation, nervous and cardiometabolic systems. This study indicates that sleep and primary mechanisms regulating BP may interact to elevate BP level, suggesting novel insights into sleep-related BP regulation.


Asunto(s)
Estudio de Asociación del Genoma Completo , Hipertensión , Presión Sanguínea/genética , Sitios Genéticos/genética , Humanos , Hipertensión/genética , Polimorfismo de Nucleótido Simple/genética , Sueño/genética
9.
Mol Psychiatry ; 26(6): 2111-2125, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32372009

RESUMEN

Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, "Some College" (yes/no) and "Graduated College" (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 × 10-8). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.


Asunto(s)
Estudio de Asociación del Genoma Completo , Hipertensión , Presión Sanguínea/genética , Epistasis Genética , Sitios Genéticos , Humanos , Hipertensión/genética , Polimorfismo de Nucleótido Simple
10.
Clin Epigenetics ; 12(1): 157, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33092652

RESUMEN

BACKGROUND: Tobacco smoking is a well-known modifiable risk factor for many chronic diseases, including cardiovascular disease (CVD). One of the proposed underlying mechanism linking smoking to disease is via epigenetic modifications, which could affect the expression of disease-associated genes. Here, we conducted a three-way association study to identify the relationship between smoking-related changes in DNA methylation and gene expression and their associations with cardio-metabolic traits. RESULTS: We selected 2549 CpG sites and 443 gene expression probes associated with current versus never smokers, from the largest epigenome-wide association study and transcriptome-wide association study to date. We examined three-way associations, including CpG versus gene expression, cardio-metabolic trait versus CpG, and cardio-metabolic trait versus gene expression, in the Rotterdam study. Subsequently, we replicated our findings in The Cooperative Health Research in the Region of Augsburg (KORA) study. After correction for multiple testing, we identified both cis- and trans-expression quantitative trait methylation (eQTM) associations in blood. Specifically, we found 1224 smoking-related CpGs associated with at least one of the 443 gene expression probes, and 200 smoking-related gene expression probes to be associated with at least one of the 2549 CpGs. Out of these, 109 CpGs and 27 genes were associated with at least one cardio-metabolic trait in the Rotterdam Study. We were able to replicate the associations with cardio-metabolic traits of 26 CpGs and 19 genes in the KORA study. Furthermore, we identified a three-way association of triglycerides with two CpGs and two genes (GZMA; CLDND1), and BMI with six CpGs and two genes (PID1; LRRN3). Finally, our results revealed the mediation effect of cg03636183 (F2RL3), cg06096336 (PSMD1), cg13708645 (KDM2B), and cg17287155 (AHRR) within the association between smoking and LRRN3 expression. CONCLUSIONS: Our study indicates that smoking-related changes in DNA methylation and gene expression are associated with cardio-metabolic risk factors. These findings may provide additional insights into the molecular mechanisms linking smoking to the development of CVD.


Asunto(s)
Enfermedades Cardiovasculares/genética , Epigenómica/métodos , Fumar/efectos adversos , Triglicéridos/genética , Anciano , Índice de Masa Corporal , Factores de Riesgo Cardiometabólico , Enfermedades Cardiovasculares/epidemiología , Estudios de Casos y Controles , Islas de CpG/genética , Metilación de ADN , Epigénesis Genética , Femenino , Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Países Bajos , Fenotipo , Fumar/sangre , Fumar/genética , Transcriptoma
11.
PLoS Comput Biol ; 16(2): e1007616, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32012148

RESUMEN

Genome-wide association studies (GWAS) identify genetic variants associated with traits or diseases. GWAS never directly link variants to regulatory mechanisms. Instead, the functional annotation of variants is typically inferred by post hoc analyses. A specific class of deep learning-based methods allows for the prediction of regulatory effects per variant on several cell type-specific chromatin features. We here describe "DeepWAS", a new approach that integrates these regulatory effect predictions of single variants into a multivariate GWAS setting. Thereby, single variants associated with a trait or disease are directly coupled to their impact on a chromatin feature in a cell type. Up to 61 regulatory SNPs, called dSNPs, were associated with multiple sclerosis (MS, 4,888 cases and 10,395 controls), major depressive disorder (MDD, 1,475 cases and 2,144 controls), and height (5,974 individuals). These variants were mainly non-coding and reached at least nominal significance in classical GWAS. The prediction accuracy was higher for DeepWAS than for classical GWAS models for 91% of the genome-wide significant, MS-specific dSNPs. DSNPs were enriched in public or cohort-matched expression and methylation quantitative trait loci and we demonstrated the potential of DeepWAS to generate testable functional hypotheses based on genotype data alone. DeepWAS is available at https://github.com/cellmapslab/DeepWAS.


Asunto(s)
Aprendizaje Profundo , Estudios de Asociación Genética , Análisis Multivariante , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
12.
Nat Commun ; 11(1): 15, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900413

RESUMEN

DNA methylation and blood circulating proteins have been associated with many complex disorders, but the underlying disease-causing mechanisms often remain unclear. Here, we report an epigenome-wide association study of 1123 proteins from 944 participants of the KORA population study and replication in a multi-ethnic cohort of 344 individuals. We identify 98 CpG-protein associations (pQTMs) at a stringent Bonferroni level of significance. Overlapping associations with transcriptomics, metabolomics, and clinical endpoints suggest implication of processes related to chronic low-grade inflammation, including a network involving methylation of NLRC5, a regulator of the inflammasome, and associated pQTMs implicating key proteins of the immune system, such as CD48, CD163, CXCL10, CXCL11, LAG3, FCGR3B, and B2M. Our study links DNA methylation to disease endpoints via intermediate proteomics phenotypes and identifies correlative networks that may eventually be targeted in a personalized approach of chronic low-grade inflammation.


Asunto(s)
Proteínas Sanguíneas/genética , Inflamación/genética , Adulto , Anciano , Anciano de 80 o más Años , Quimiocina CXCL10/genética , Estudios de Cohortes , Islas de CpG , Metilación de ADN , Epigenoma , Epigenómica , Femenino , Proteínas Ligadas a GPI/genética , Alemania , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Persona de Mediana Edad , Proteómica , Receptores de IgG/genética
13.
Nat Commun ; 10(1): 5121, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31719535

RESUMEN

Both short and long sleep are associated with an adverse lipid profile, likely through different biological pathways. To elucidate the biology of sleep-associated adverse lipid profile, we conduct multi-ancestry genome-wide sleep-SNP interaction analyses on three lipid traits (HDL-c, LDL-c and triglycerides). In the total study sample (discovery + replication) of 126,926 individuals from 5 different ancestry groups, when considering either long or short total sleep time interactions in joint analyses, we identify 49 previously unreported lipid loci, and 10 additional previously unreported lipid loci in a restricted sample of European-ancestry cohorts. In addition, we identify new gene-sleep interactions for known lipid loci such as LPL and PCSK9. The previously unreported lipid loci have a modest explained variance in lipid levels: most notable, gene-short-sleep interactions explain 4.25% of the variance in triglyceride level. Collectively, these findings contribute to our understanding of the biological mechanisms involved in sleep-associated adverse lipid profiles.


Asunto(s)
Sitios Genéticos , Lípidos/genética , Filogenia , Polimorfismo de Nucleótido Simple/genética , Sueño/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Mapeo Cromosómico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
14.
Genetics ; 211(4): 1395-1407, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30796011

RESUMEN

In humans, most genome-wide association studies have been conducted using data from Caucasians and many of the reported findings have not replicated in other populations. This lack of replication may be due to statistical issues (small sample sizes or confounding) or perhaps more fundamentally to differences in the genetic architecture of traits between ethnically diverse subpopulations. What aspects of the genetic architecture of traits vary between subpopulations and how can this be quantified? We consider studying effect heterogeneity using Bayesian random effect interaction models. The proposed methodology can be applied using shrinkage and variable selection methods, and produces useful information about effect heterogeneity in the form of whole-genome summaries (e.g., the proportions of variance of a complex trait explained by a set of SNPs and the average correlation of effects) as well as SNP-specific attributes. Using simulations, we show that the proposed methodology yields (nearly) unbiased estimates when the sample size is not too small relative to the number of SNPs used. Subsequently, we used the methodology for the analyses of four complex human traits (standing height, high-density lipoprotein, low-density lipoprotein, and serum urate levels) in European-Americans (EAs) and African-Americans (AAs). The estimated correlations of effects between the two subpopulations were well below unity for all the traits, ranging from 0.73 to 0.50. The extent of effect heterogeneity varied between traits and SNP sets. Height showed less differences in SNP effects between AAs and EAs whereas HDL, a trait highly influenced by lifestyle, exhibited a greater extent of effect heterogeneity. For all the traits, we observed substantial variability in effect heterogeneity across SNPs, suggesting that effect heterogeneity varies between regions of the genome.


Asunto(s)
Etnicidad/genética , Heterogeneidad Genética , Modelos Genéticos , Población/genética , Carácter Cuantitativo Heredable , Estudio de Asociación del Genoma Completo/métodos , Estudio de Asociación del Genoma Completo/normas , Humanos , Polimorfismo de Nucleótido Simple
15.
Am J Epidemiol ; 188(6): 1033-1054, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30698716

RESUMEN

A person's lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interactions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a multiancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. We included 45 studies in stage 1 (genome-wide discovery) and 66 studies in stage 2 (focused follow-up), for a total of 394,584 individuals from 5 ancestry groups. Analyses covered the period July 2014-November 2017. Genetic main effects and interaction effects were jointly assessed by means of a 2-degrees-of-freedom (df) test, and a 1-df test was used to assess the interaction effects alone. Variants at 495 loci were at least suggestively associated (P < 1 × 10-6) with lipid levels in stage 1 and were evaluated in stage 2, followed by combined analyses of stage 1 and stage 2. In the combined analysis of stages 1 and 2, a total of 147 independent loci were associated with lipid levels at P < 5 × 10-8 using 2-df tests, of which 18 were novel. No genome-wide-significant associations were found testing the interaction effect alone. The novel loci included several genes (proprotein convertase subtilisin/kexin type 5 (PCSK5), vascular endothelial growth factor B (VEGFB), and apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1) complementation factor (A1CF)) that have a putative role in lipid metabolism on the basis of existing evidence from cellular and experimental models.


Asunto(s)
Consumo de Bebidas Alcohólicas/epidemiología , Lípidos/sangre , Adolescente , Adulto , Anciano , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Estilo de Vida , Masculino , Persona de Mediana Edad , Fenotipo , Grupos Raciales , Triglicéridos/sangre , Factor B de Crecimiento Endotelial Vascular , Adulto Joven
16.
JAMA Psychiatry ; 75(9): 949-959, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29998287

RESUMEN

Importance: Depressive disorders arise from a combination of genetic and environmental risk factors. Epigenetic disruption provides a plausible mechanism through which gene-environment interactions lead to depression. Large-scale, epigenome-wide studies on depression are missing, hampering the identification of potentially modifiable biomarkers. Objective: To identify epigenetic mechanisms underlying depression in middle-aged and elderly persons, using DNA methylation in blood. Design, Setting, and Participants: To date, the first cross-ethnic meta-analysis of epigenome-wide association studies (EWAS) within the framework of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium was conducted. The discovery EWAS included 7948 individuals of European origin from 9 population-based cohorts. Participants who were assessed for both depressive symptoms and whole-blood DNA methylation were included in the study. Results of EWAS were pooled using sample-size weighted meta-analysis. Replication of the top epigenetic sites was performed in 3308 individuals of African American and European origin from 2 population-based cohorts. Main Outcomes and Measures: Whole-blood DNA methylation levels were assayed with Illumina-Infinium Human Methylation 450K BeadChip and depressive symptoms were assessed by questionnaire. Results: The discovery cohorts consisted of 7948 individuals (4104 [51.6%] women) with a mean (SD) age of 65.4 (5.8) years. The replication cohort consisted of 3308 individuals (2456 [74.2%] women) with a mean (SD) age of 60.3 (6.4) years. The EWAS identified methylation of 3 CpG sites to be significantly associated with increased depressive symptoms: cg04987734 (P = 1.57 × 10-08; n = 11 256; CDC42BPB gene), cg12325605 (P = 5.24 × 10-09; n = 11 256; ARHGEF3 gene), and an intergenic CpG site cg14023999 (P = 5.99 × 10-08; n = 11 256; chromosome = 15q26.1). The predicted expression of the CDC42BPB gene in the brain (basal ganglia) (effect, 0.14; P = 2.7 × 10-03) and of ARHGEF3 in fibroblasts (effect, -0.48; P = 9.8 × 10-04) was associated with major depression. Conclusions and Relevance: This study identifies 3 methylated sites associated with depressive symptoms. All 3 findings point toward axon guidance as the common disrupted pathway in depression. The findings provide new insights into the molecular mechanisms underlying the complex pathophysiology of depression. Further research is warranted to determine the utility of these findings as biomarkers of depression and evaluate any potential role in the pathophysiology of depression and their downstream clinical effects.


Asunto(s)
Metilación de ADN , Depresión , Anciano , Depresión/epidemiología , Depresión/genética , Epigénesis Genética , Interacción Gen-Ambiente , Estudio de Asociación del Genoma Completo , Humanos , Persona de Mediana Edad
17.
PLoS One ; 13(6): e0198166, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29912962

RESUMEN

Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in ≈131K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P < 1.0 x 10-5). In Stage 2, these SNVs were tested for independent external replication in ≈440K individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10-8). For African ancestry samples, we detected 18 potentially novel BP loci (P < 5.0 x 10-8) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2) have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension.


Asunto(s)
Consumo de Bebidas Alcohólicas/epidemiología , Consumo de Bebidas Alcohólicas/genética , Presión Sanguínea/genética , Hipertensión/epidemiología , Hipertensión/genética , Polimorfismo de Nucleótido Simple , Grupos Raciales , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad/epidemiología , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Linaje , Grupos Raciales/genética , Grupos Raciales/estadística & datos numéricos , Adulto Joven
18.
PLoS One ; 12(10): e0182472, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29084233

RESUMEN

BACKGROUND: DNA methylation is affected by the activities of the key enzymes and intermediate metabolites of the one-carbon pathway, one of which involves homocysteine. We investigated the effect of the well-known genetic variant associated with mildly elevated homocysteine: MTHFR 677C>T independently and in combination with other homocysteine-associated variants, on genome-wide leukocyte DNA-methylation. METHODS: Methylation levels were assessed using Illumina 450k arrays on 9,894 individuals of European ancestry from 12 cohort studies. Linear-mixed-models were used to study the association of additive MTHFR 677C>T and genetic-risk score (GRS) based on 18 homocysteine-associated SNPs, with genome-wide methylation. RESULTS: Meta-analysis revealed that the MTHFR 677C>T variant was associated with 35 CpG sites in cis, and the GRS showed association with 113 CpG sites near the homocysteine-associated variants. Genome-wide analysis revealed that the MTHFR 677C>T variant was associated with 1 trans-CpG (nearest gene ZNF184), while the GRS model showed association with 5 significant trans-CpGs annotated to nearest genes PTF1A, MRPL55, CTDSP2, CRYM and FKBP5. CONCLUSIONS: Our results do not show widespread changes in DNA-methylation across the genome, and therefore do not support the hypothesis that mildly elevated homocysteine is associated with widespread methylation changes in leukocytes.


Asunto(s)
Metilación de ADN , Homocisteína/metabolismo , Leucocitos/metabolismo , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Adulto , Cromosomas Humanos Par 6 , Estudios de Cohortes , Islas de CpG , Humanos , Polimorfismo de Nucleótido Simple , Cristalinas mu
19.
PLoS One ; 11(11): e0165548, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27832094

RESUMEN

BACKGROUND: Chronic widespread musculoskeletal pain (CWP) is the cardinal symptom of fibromyalgia and affects about 12% of the general population. Familial aggregation of CWP has been repeatedly demonstrated with estimated heritabilities of around 50%, indicating a genetic susceptibility. The objective of the study was to explore genome-wide disease-differentially methylated positions (DMPs) for chronic widespread pain (CWP) in a sample of unrelated individuals and a subsample of discordant monozygotic (MZ) twins. METHODOLOGY/PRINCIPLE FINDINGS: A total of N = 281 twin individuals from the TwinsUK registry, including N = 33 MZ twins discordant for self-reported CWP, were part of the discovery sample. The replication sample included 729 men and 756 women from a subsample of the KORA S4 survey-an independent population-based cohort from Southern Germany. Epigenome-wide analysis of DNA methylation was conducted using the Illumina Infinium HumanMethylation 450 DNA BeadChip in both the discovery and replication sample. Of our 40 main loci that were carried forward for replication, three CPGs reached significant p-values in the replication sample, including malate dehydrogenase 2 (MDH2; p-value 0.017), tetranectin (CLEC3B; p-value 0.039), and heat shock protein beta-6 (HSPB6; p-value 0.016). The associations between the collagen type I, alpha 2 chain (COL1A2) and monoamine oxidase B (MAOB) observed in the discovery sample-both of which have been previously reported to be biological candidates for pain-could not be replicated. CONCLUSION/SIGNIFICANCE: Our results may serve as a starting point to encourage further investigation in large and independent population-based cohorts of DNA methylation and other epigenetic changes as possible disease mechanisms in CWP. Ultimately, understanding the key mechanisms underlying CWP may lead to new treatments and inform clinical practice.


Asunto(s)
Dolor Crónico/genética , Metilación de ADN , Epigénesis Genética , Dolor Musculoesquelético/genética , Anciano , Femenino , Fibromialgia/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Proteínas del Choque Térmico HSP20/genética , Humanos , Lectinas Tipo C/genética , Malato Deshidrogenasa/genética , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Gemelos Monocigóticos
20.
J Invest Dermatol ; 134(7): 1873-1883, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24739813

RESUMEN

Epigenetic alterations are increasingly recognized as mechanisms for disease-associated changes in genome function and important risk factors for complex diseases. The epigenome differs between cell types and so far has been characterized in few human tissues only. In order to identify disease-associated DNA methylation differences for atopic dermatitis (AD), we investigated DNA from whole blood, T cells, B cells, as well as lesional and non-lesional epidermis from AD patients and healthy controls. To elicit functional links, we examined epidermal mRNA expression profiles. No genome-wide significant DNA methylation differences between AD cases and controls were observed in whole blood, T cells, and B cells, and, in general, intra-individual differences in DNA methylation were larger than interindividual differences. However, striking methylation differences were observed between lesional epidermis from patients and healthy control epidermis for various CpG sites, which partly correlated with altered transcript levels of genes predominantly relevant for epidermal differentiation and innate immune response. Significant DNA methylation differences were discordant in skin and blood samples, suggesting that blood is not an ideal surrogate for skin tissue. Our pilot study provides preliminary evidence for functionally relevant DNA methylation differences associated with AD, particularly in the epidermis, and represents a starting point for future investigations of epigenetic mechanisms in AD.


Asunto(s)
Metilación de ADN/genética , Metilación de ADN/inmunología , Dermatitis Atópica/genética , Dermatitis Atópica/inmunología , Epigénesis Genética/genética , Epigénesis Genética/inmunología , Adulto , Anciano , Linfocitos B/inmunología , Islas de CpG/genética , Islas de CpG/inmunología , Epidermis/inmunología , Femenino , Prueba de Complementación Genética , Humanos , Inmunidad Innata/genética , Masculino , Persona de Mediana Edad , ARN Mensajero/genética , Linfocitos T/inmunología , Transcriptoma/genética , Transcriptoma/inmunología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...