Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Clin Cancer Res ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869831

RESUMEN

Osteosarcoma and Ewing sarcoma are bone tumours mostly diagnosed in children, adolescents and young adults. Despite multi-modal therapy, morbidity is high and survival rates remain low, especially in the metastatic disease setting. Trials investigating targeted therapies and immunotherapies have not been ground-breaking. Better understanding of biological subgroups, the role of the tumour immune microenvironment, factors that promote metastasis and clinical biomarkers of prognosis and drug response are required to make progress. A prerequisite to achieve desired success is a thorough, systematic and clinically linked biological analysis of patient samples but disease rarity and tissue processing challenges such as logistics and infrastructure have contributed to a lack of relevant samples for clinical care and research. There is a need for a Europe-wide framework to be implemented for the adequate and minimal sampling, processing, storage and analysis of patient samples. Two international panels of scientists, clinicians and patient and parent advocates have formed the Fight Osteosarcoma Through European Research (FOSTER) consortium and the Euro Ewing Consortium (EEC). The consortia shared their expertise and institutional practices to formulate new guidelines. We report new reference standards for adequate and minimally required sampling (time points, diagnostic samples, liquid biopsy tubes), handling and biobanking to enable advanced biological studies in bone sarcoma. We describe standards for analysis and annotation to drive collaboration and data harmonisation with practical, legal and ethical considerations. This position paper provides comprehensive guidelines that should become the new standards of care that will accelerate scientific progress, promote collaboration and improve outcomes.

2.
Nat Comput Sci ; 4(3): 237-250, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38438786

RESUMEN

Single-cell technologies enable high-resolution studies of phenotype-defining molecular mechanisms. However, data sparsity and cellular heterogeneity make modeling biological variability across single-cell samples difficult. Here we present SCORPION, a tool that uses a message-passing algorithm to reconstruct comparable gene regulatory networks from single-cell/nuclei RNA-sequencing data that are suitable for population-level comparisons by leveraging the same baseline priors. Using synthetic data, we found that SCORPION outperformed 12 existing gene regulatory network reconstruction techniques. Using supervised experiments, we show that SCORPION can accurately identify differences in regulatory networks between wild-type and transcription factor-perturbed cells. We demonstrate SCORPION's scalability to population-level analyses using a single-cell RNA-sequencing atlas containing 200,436 cells from colorectal cancer and adjacent healthy tissues. The differences between tumor regions detected by SCORPION are consistent across multiple cohorts as well as with our understanding of disease progression, and elucidate phenotypic regulators that may impact patient survival.


Asunto(s)
Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Perfilación de la Expresión Génica , Algoritmos , ARN
3.
J Immunol ; 212(1): 117-129, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38019121

RESUMEN

The vascular endothelium acts as a dynamic interface between blood and tissue. TNF-α, a major regulator of inflammation, induces endothelial cell (EC) transcriptional changes, the overall response dynamics of which have not been fully elucidated. In the present study, we conducted an extended time-course analysis of the human EC response to TNF, from 30 min to 72 h. We identified regulated genes and used weighted gene network correlation analysis to decipher coexpression profiles, uncovering two distinct temporal phases: an acute response (between 1 and 4 h) and a later phase (between 12 and 24 h). Sex-based subset analysis revealed that the response was comparable between female and male cells. Several previously uncharacterized genes were strongly regulated during the acute phase, whereas the majority in the later phase were IFN-stimulated genes. A lack of IFN transcription indicated that this IFN-stimulated gene expression was independent of de novo IFN production. We also observed two groups of genes whose transcription was inhibited by TNF: those that resolved toward baseline levels and those that did not. Our study provides insights into the global dynamics of the EC transcriptional response to TNF, highlighting distinct gene expression patterns during the acute and later phases. Data for all coding and noncoding genes is provided on the Web site (http://www.endothelial-response.org/). These findings may be useful in understanding the role of ECs in inflammation and in developing TNF signaling-targeted therapies.


Asunto(s)
Endotelio Vascular , Perfilación de la Expresión Génica , Masculino , Humanos , Femenino , Endotelio Vascular/metabolismo , Células Endoteliales/metabolismo , Transducción de Señal , Células Cultivadas , Inflamación/genética , Inflamación/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
4.
5.
Bioinformatics ; 39(10)2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37802917

RESUMEN

MOTIVATION: Gene co-expression measurements are widely used in computational biology to identify coordinated expression patterns across a group of samples. Coordinated expression of genes may indicate that they are controlled by the same transcriptional regulatory program, or involved in common biological processes. Gene co-expression is generally estimated from RNA-Sequencing data, which are commonly normalized to remove technical variability. Here, we demonstrate that certain normalization methods, in particular quantile-based methods, can introduce false-positive associations between genes. These false-positive associations can consequently hamper downstream co-expression network analysis. Quantile-based normalization can, however, be extremely powerful. In particular, when preprocessing large-scale heterogeneous data, quantile-based normalization methods such as smooth quantile normalization can be applied to remove technical variability while maintaining global differences in expression for samples with different biological attributes. RESULTS: We developed SNAIL (Smooth-quantile Normalization Adaptation for the Inference of co-expression Links), a normalization method based on smooth quantile normalization specifically designed for modeling of co-expression measurements. We show that SNAIL avoids formation of false-positive associations in co-expression as well as in downstream network analyses. Using SNAIL, one can avoid arbitrary gene filtering and retain associations to genes that only express in small subgroups of samples. This highlights the method's potential future impact on network modeling and other association-based approaches in large-scale heterogeneous data. AVAILABILITY AND IMPLEMENTATION: The implementation of the SNAIL algorithm and code to reproduce the analyses described in this work can be found in the GitHub repository https://github.com/kuijjerlab/PySNAIL.


Asunto(s)
Perfilación de la Expresión Génica , ARN , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Algoritmos , Biología Computacional
6.
NAR Cancer ; 5(3): zcad037, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37492373

RESUMEN

Characterizing inter-tumor heterogeneity is crucial for selecting suitable cancer therapy, as the presence of diverse molecular subgroups of patients can be associated with disease outcome or response to treatment. While cancer subtypes are often characterized by differences in gene expression, the mechanisms driving these differences are generally unknown. We set out to model the regulatory mechanisms driving sarcoma heterogeneity based on patient-specific, genome-wide gene regulatory networks. We developed a new computational framework, PORCUPINE, which combines knowledge on biological pathways with permutation-based network analysis to identify pathways that exhibit significant regulatory heterogeneity across a patient population. We applied PORCUPINE to patient-specific leiomyosarcoma networks modeled on data from The Cancer Genome Atlas and validated our results in an independent dataset from the German Cancer Research Center. PORCUPINE identified 37 heterogeneously regulated pathways, including pathways representing potential targets for treatment of subgroups of leiomyosarcoma patients, such as FGFR and CTLA4 inhibitory signaling. We validated the detected regulatory heterogeneity through analysis of networks and chromatin states in leiomyosarcoma cell lines. We showed that the heterogeneity identified with PORCUPINE is not associated with methylation profiles or clinical features, thereby suggesting an independent mechanism of patient heterogeneity driven by the complex landscape of gene regulatory interactions.

7.
Genome Biol ; 24(1): 45, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36894939

RESUMEN

Inference and analysis of gene regulatory networks (GRNs) require software that integrates multi-omic data from various sources. The Network Zoo (netZoo; netzoo.github.io) is a collection of open-source methods to infer GRNs, conduct differential network analyses, estimate community structure, and explore the transitions between biological states. The netZoo builds on our ongoing development of network methods, harmonizing the implementations in various computing languages and between methods to allow better integration of these tools into analytical pipelines. We demonstrate the utility using multi-omic data from the Cancer Cell Line Encyclopedia. We will continue to expand the netZoo to incorporate additional methods.


Asunto(s)
Redes Reguladoras de Genes , Neoplasias , Humanos , Algoritmos , Programas Informáticos , Multiómica , Biología Computacional/métodos
8.
J Pathol ; 259(1): 56-68, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36219477

RESUMEN

Melanoma is a heterogenous malignancy with an unpredictable clinical course. Most patients who present in the clinic are diagnosed with primary melanoma, yet large-scale sequencing efforts have focused primarily on metastatic disease. In this study we sequence-profiled 524 American Joint Committee on Cancer Stage I-III primary tumours. Our analysis of these data reveals recurrent driver mutations, mutually exclusive genetic interactions, where two genes were never or rarely co-mutated, and an absence of co-occurring genetic events. Further, we intersected copy number calls from our primary melanoma data with whole-genome CRISPR screening data to identify the transcription factor interferon regulatory factor 4 (IRF4) as a melanoma-associated dependency. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Melanoma , Humanos , Mutación , Melanoma/genética , Genoma , Genómica , Reino Unido
9.
Front Digit Health ; 4: 1007784, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36274654

RESUMEN

We are rapidly approaching a future in which cancer patient digital twins will reach their potential to predict cancer prevention, diagnosis, and treatment in individual patients. This will be realized based on advances in high performance computing, computational modeling, and an expanding repertoire of observational data across multiple scales and modalities. In 2020, the US National Cancer Institute, and the US Department of Energy, through a trans-disciplinary research community at the intersection of advanced computing and cancer research, initiated team science collaborative projects to explore the development and implementation of predictive Cancer Patient Digital Twins. Several diverse pilot projects were launched to provide key insights into important features of this emerging landscape and to determine the requirements for the development and adoption of cancer patient digital twins. Projects included exploring approaches to using a large cohort of digital twins to perform deep phenotyping and plan treatments at the individual level, prototyping self-learning digital twin platforms, using adaptive digital twin approaches to monitor treatment response and resistance, developing methods to integrate and fuse data and observations across multiple scales, and personalizing treatment based on cancer type. Collectively these efforts have yielded increased insights into the opportunities and challenges facing cancer patient digital twin approaches and helped define a path forward. Given the rapidly growing interest in patient digital twins, this manuscript provides a valuable early progress report of several CPDT pilot projects commenced in common, their overall aims, early progress, lessons learned and future directions that will increasingly involve the broader research community.

10.
Cell Rep Methods ; 2(8): 100269, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-36046619

RESUMEN

B and T cell receptor (immune) repertoires can represent an individual's immune history. While current repertoire analysis methods aim to discriminate between health and disease states, they are typically based on only a limited number of parameters. Here, we introduce immuneREF: a quantitative multidimensional measure of adaptive immune repertoire (and transcriptome) similarity that allows interpretation of immune repertoire variation by relying on both repertoire features and cross-referencing of simulated and experimental datasets. To quantify immune repertoire similarity landscapes across health and disease, we applied immuneREF to >2,400 datasets from individuals with varying immune states (healthy, [autoimmune] disease, and infection). We discovered, in contrast to the current paradigm, that blood-derived immune repertoires of healthy and diseased individuals are highly similar for certain immune states, suggesting that repertoire changes to immune perturbations are less pronounced than previously thought. In conclusion, immuneREF enables the population-wide study of adaptive immune response similarity across immune states.


Asunto(s)
Inmunidad Adaptativa , Enfermedades Autoinmunes , Humanos , Receptores de Antígenos de Linfocitos T/genética , Receptores Inmunológicos
11.
13.
NAR Genom Bioinform ; 4(1): lqac002, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35156023

RESUMEN

Gene regulatory network inference allows for the modeling of genome-scale regulatory processes that are altered during development, in disease, and in response to perturbations. Our group has developed a collection of tools to model various regulatory processes, including transcriptional (PANDA, SPIDER) and post-transcriptional (PUMA) gene regulation, as well as gene regulation in individual samples (LIONESS). These methods work by postulating a network structure and then optimizing that structure to be consistent with multiple lines of biological evidence through repeated operations on data matrices. Although our methods are widely used, the corresponding computational complexity, and the associated costs and run times, do limit some applications. To improve the cost/time performance of these algorithms, we developed gpuZoo which implements GPU-accelerated calculations, dramatically improving the performance of these algorithms. The runtime of the gpuZoo implementation in MATLAB and Python is up to 61 times faster and 28 times less expensive than multi-core CPU implementation of the same methods. gpuZoo is available in MATLAB through the netZooM package https://github.com/netZoo/netZooM and in Python through the netZooPy package https://github.com/netZoo/netZooPy.

14.
Bioinformatics ; 38(2): 580-582, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34320637

RESUMEN

MOTIVATION: Characterizing cells with rare molecular phenotypes is one of the promises of high throughput single-cell RNA sequencing (scRNA-seq) techniques. However, collecting enough cells with the desired molecular phenotype in a single experiment is challenging, requiring several samples preprocessing steps to filter and collect the desired cells experimentally before sequencing. Data integration of multiple public single-cell experiments stands as a solution for this problem, allowing the collection of enough cells exhibiting the desired molecular signatures. By increasing the sample size of the desired cell type, this approach enables a robust cell type transcriptome characterization. RESULTS: Here, we introduce rPanglaoDB, an R package to download and merge the uniformly processed and annotated scRNA-seq data provided by the PanglaoDB database. To show the potential of rPanglaoDB for collecting rare cell types by integrating multiple public datasets, we present a biological application collecting and characterizing a set of 157 fibrocytes. Fibrocytes are a rare monocyte-derived cell type, that exhibits both the inflammatory features of macrophages and the tissue remodeling properties of fibroblasts. This constitutes the first fibrocytes' unbiased transcriptome profile report. We compared the transcriptomic profile of the fibrocytes against the fibroblasts collected from the same tissue samples and confirm their associated relationship with healing processes in tissue damage and infection through the activation of the prostaglandin biosynthesis and regulation pathway. AVAILABILITY AND IMPLEMENTATION: rPanglaoDB is implemented as an R package available through the CRAN repositories https://CRAN.R-project.org/package=rPanglaoDB.


Asunto(s)
Perfilación de la Expresión Génica , Programas Informáticos , Perfilación de la Expresión Génica/métodos , Análisis de Expresión Génica de una Sola Célula , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
15.
Nucleic Acids Res ; 50(D1): D610-D621, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34508353

RESUMEN

Gene regulation plays a fundamental role in shaping tissue identity, function, and response to perturbation. Regulatory processes are controlled by complex networks of interacting elements, including transcription factors, miRNAs and their target genes. The structure of these networks helps to determine phenotypes and can ultimately influence the development of disease or response to therapy. We developed GRAND (https://grand.networkmedicine.org) as a database for computationally-inferred, context-specific gene regulatory network models that can be compared between biological states, or used to predict which drugs produce changes in regulatory network structure. The database includes 12 468 genome-scale networks covering 36 human tissues, 28 cancers, 1378 unperturbed cell lines, as well as 173 013 TF and gene targeting scores for 2858 small molecule-induced cell line perturbation paired with phenotypic information. GRAND allows the networks to be queried using phenotypic information and visualized using a variety of interactive tools. In addition, it includes a web application that matches disease states to potentially therapeutic small molecule drugs using regulatory network properties.


Asunto(s)
Bases de Datos Genéticas , Bases de Datos Farmacéuticas , Redes Reguladoras de Genes/genética , Programas Informáticos , Regulación de la Expresión Génica/genética , Genoma Humano/genética , Humanos , MicroARNs/clasificación , MicroARNs/genética , Factores de Transcripción/clasificación , Factores de Transcripción/genética
16.
Cancer Res ; 81(21): 5401-5412, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34493595

RESUMEN

Glioblastoma is an aggressive cancer of the brain and spine. While analysis of glioblastoma 'omics data has somewhat improved our understanding of the disease, it has not led to direct improvement in patient survival. Cancer survival is often characterized by differences in gene expression, but the mechanisms that drive these differences are generally unknown. We therefore set out to model the regulatory mechanisms associated with glioblastoma survival. We inferred individual patient gene regulatory networks using data from two different expression platforms from The Cancer Genome Atlas. We performed comparative network analysis between patients with long- and short-term survival. Seven pathways were identified as associated with survival, all of them involved in immune signaling; differential regulation of PD1 signaling was validated to correspond with outcome in an independent dataset from the German Glioma Network. In this pathway, transcriptional repression of genes for which treatment options are available was lost in short-term survivors; this was independent of mutational burden and only weakly associated with T-cell infiltration. Collectively, these results provide a new way to stratify patients with glioblastoma that uses network features as biomarkers to predict survival. They also identify new potential therapeutic interventions, underscoring the value of analyzing gene regulatory networks in individual patients with cancer. SIGNIFICANCE: Genome-wide network modeling of individual glioblastomas identifies dysregulation of PD1 signaling in patients with poor prognosis, indicating this approach can be used to understand how gene regulation influences cancer progression.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Glioblastoma/patología , Linfocitos Infiltrantes de Tumor/inmunología , Mutación , Receptor de Muerte Celular Programada 1/metabolismo , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica , Glioblastoma/genética , Glioblastoma/inmunología , Glioblastoma/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Receptor de Muerte Celular Programada 1/genética , Tasa de Supervivencia
17.
Biomedicines ; 9(8)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34440251

RESUMEN

Sarcomas comprise a collection of highly heterogeneous malignancies that can be grossly grouped in the categories of sarcomas with simple or complex genomes. Since the outcome for most sarcoma patients has barely improved in the last decades, there is an urgent need for improved therapies. Immunotherapy, and especially T cell checkpoint blockade, has recently been a game-changer in cancer therapy as it produced significant and durable treatment responses in several cancer types. Currently, only a small fraction of sarcoma patients benefit from immunotherapy, supposedly due to a general lack of somatically mutated antigens (neoantigens) and spontaneous T cell immunity in most cancers. However, genomic events resulting from chromosomal instability are frequent in sarcomas with complex genomes and could drive immunity in those tumors. Improving our understanding of the mechanisms that shape the immune landscape of sarcomas will be crucial to overcoming the current challenges of sarcoma immunotherapy. This review focuses on what is currently known about the tumor microenvironment in sarcomas and how this relates to their genomic features. Moreover, we discuss novel therapeutic strategies that leverage the tumor microenvironment to increase the clinical efficacy of immunotherapy, and which could provide new avenues for the treatment of sarcomas.

18.
Front Genet ; 12: 649440, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968132

RESUMEN

Networks are useful tools to represent and analyze interactions on a large, or genome-wide scale and have therefore been widely used in biology. Many biological networks-such as those that represent regulatory interactions, drug-gene, or gene-disease associations-are of a bipartite nature, meaning they consist of two different types of nodes, with connections only forming between the different node sets. Analysis of such networks requires methodologies that are specifically designed to handle their bipartite nature. Community structure detection is a method used to identify clusters of nodes in a network. This approach is especially helpful in large-scale biological network analysis, as it can find structure in networks that often resemble a "hairball" of interactions in visualizations. Often, the communities identified in biological networks are enriched for specific biological processes and thus allow one to assign drugs, regulatory molecules, or diseases to such processes. In addition, comparison of community structures between different biological conditions can help to identify how network rewiring may lead to tissue development or disease, for example. In this mini review, we give a theoretical basis of different methods that can be applied to detect communities in bipartite biological networks. We introduce and discuss different scores that can be used to assess the quality of these community structures. We then apply a wide range of methods to a drug-gene interaction network to highlight the strengths and weaknesses of these methods in their application to large-scale, bipartite biological networks.

19.
PLoS One ; 16(3): e0248140, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33690666

RESUMEN

Sarcomas are a heterogeneous group of mesenchymal orphan cancers and new treatment alternatives beyond traditional chemotherapeutic regimes are much needed. So far, tumor mutation analysis has not led to significant treatment advances, and we have attempted to bypass this limitation by performing direct drug testing of a library of 353 anti-cancer compounds that are either FDA-approved, in clinical trial, or in advanced stages of preclinical development on a panel of 13 liposarcoma cell lines. We identified and validated six drugs, targeting different mechanisms and with good efficiency across the cell lines: MLN2238 -a proteasome inhibitor, GSK2126458 -a PI3K/mTOR inhibitor, JNJ-26481585 -a histone deacetylase inhibitor, triptolide-a multi-target drug, YM155 -a survivin inhibitor, and APO866 (FK866)-a nicotinamide phosphoribosyl transferase inhibitor. GR50s for those drugs were mostly in the nanomolar range, and in many cases below 10 nM. These drugs had long-lasting effect upon drug withdrawal, limited toxicity to normal cells and good efficacy also against tumor explants. Finally, we identified potential genomic biomarkers of their efficacy. Being approved or in clinical trials, these drugs are promising candidates for liposarcoma treatment.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Liposarcoma/tratamiento farmacológico , Acrilamidas/farmacología , Antineoplásicos/análisis , Antineoplásicos/química , Biomarcadores Farmacológicos , Compuestos de Boro/farmacología , Línea Celular Tumoral , Diterpenos/farmacología , Compuestos Epoxi/farmacología , Glicina/análogos & derivados , Glicina/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Imidazoles/farmacología , Naftoquinonas/farmacología , Fenantrenos/farmacología , Piperidinas/farmacología , Piridazinas/farmacología , Quinolinas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Sulfonamidas/farmacología
20.
Nat Mach Intell ; 3(11): 936-944, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37396030

RESUMEN

Adaptive immune receptor repertoires (AIRR) are key targets for biomedical research as they record past and ongoing adaptive immune responses. The capacity of machine learning (ML) to identify complex discriminative sequence patterns renders it an ideal approach for AIRR-based diagnostic and therapeutic discovery. To date, widespread adoption of AIRR ML has been inhibited by a lack of reproducibility, transparency, and interoperability. immuneML (immuneml.uio.no) addresses these concerns by implementing each step of the AIRR ML process in an extensible, open-source software ecosystem that is based on fully specified and shareable workflows. To facilitate widespread user adoption, immuneML is available as a command-line tool and through an intuitive Galaxy web interface, and extensive documentation of workflows is provided. We demonstrate the broad applicability of immuneML by (i) reproducing a large-scale study on immune state prediction, (ii) developing, integrating, and applying a novel deep learning method for antigen specificity prediction, and (iii) showcasing streamlined interpretability-focused benchmarking of AIRR ML.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...