Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Occup Environ Med ; 65(4): e204-e210, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36728178

RESUMEN

OBJECTIVE: Some drugs need processing before they can be administered or dispensed. We measured airborne exposure of pharmacy staff to small particles when performing these tasks. METHODS: Reconstitution of powdered drugs in vials; crushing, splitting, and counting of tablets; and opening of capsules, using different ventilation strategies, were investigated in five pharmacies after in a worst-case approach. Airborne particulate matter was determined for a range of particles sizes. RESULTS: Mean particle concentrations ranged from not detectable to 1.03 µg/m 3 (<1 µm) and 589.7 µg/m 3 (<10 µm). Dust exhaust made tasks safer. Most hazardous was pouring out tablets from a bulk supply, and least hazardous was reconstitution of a powder for injection. CONCLUSIONS: Occupational exposure during routine handling of drugs can occur, but the risks vary greatly with the nature and duration of the tasks.


Asunto(s)
Exposición Profesional , Farmacias , Humanos , Exposición Profesional/análisis , Material Particulado , Polvo/análisis , Pulmón/química , Monitoreo del Ambiente
2.
Ann Work Expo Health ; 67(3): 379-391, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36617226

RESUMEN

Low-cost particulate matter (PM) sensors provide new methods for monitoring occupational exposure to hazardous substances, such as flour dust. These devices have many possible benefits, but much remains unknown about their performance for different exposure monitoring strategies in the workplace. We explored the performance of PM sensors for four different monitoring strategies (time-weighted average and high time resolution, each quantitative and semi-quantitative) for assessing occupational exposure using low-cost PM sensors in a field study in the industrial bakery sector. Measurements were collected using four types of sensor (PATS+, Isensit, Airbeam2, and Munisense) and two reference devices (respirable gravimetric samplers and an established time-resolved device) at two large-scale bakeries, spread over 11 participants and 6 measurement days. Average PM2.5 concentrations of the low-cost sensors were compared with gravimetric respirable concentrations for 8-h shift periods and 1-min PM2.5 concentrations of the low-cost sensors were compared with time-resolved PM2.5 data from the reference device (quantitative monitoring strategy). Low-cost sensors were also ranked in terms of exposure for 8-h shifts and for 15-min periods with a shift (semi-quantitative monitoring strategy). Environmental factors and methodological variables, which can affect sensor performance, were investigated. Semi-quantitative monitoring strategies only showed more accurate results compared with quantitative strategies when these were based on shift-average exposures. The main factors that influenced sensor performance were the type of placement (positioning the devices stationary versus personal) and the company or workstation where measurements were collected. Together, these findings provide an overview of common strengths and drawbacks of low-cost sensors and different ways these can be applied in the workplace. This can be used as a starting point for further investigations and the development of guidance documents and data analysis methods.


Asunto(s)
Exposición Profesional , Material Particulado , Humanos , Material Particulado/análisis , Exposición Profesional/análisis , Polvo/análisis , Harina/análisis , Sustancias Peligrosas/análisis , Monitoreo del Ambiente/métodos
3.
Environ Epidemiol ; 6(2): e185, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35434456

RESUMEN

Exposures at work have a major impact on noncommunicable diseases (NCDs). Current risk reduction policies and strategies are informed by existing scientific evidence, which is limited due to the challenges of studying the complex relationship between exposure at work and outside work and health. We define the working life exposome as all occupational and related nonoccupational exposures. The latter includes nonoccupational exposures that may be directly or indirectly influenced by or interact with the working life of the individual in their relation to health. The Exposome Project for Health and Occupational Research aims to advance knowledge on the complex working life exposures in relation to disease beyond the single high exposure-single health outcome paradigm, mapping and relating interrelated exposures to inherent biological pathways, key body functions, and health. This will be achieved by combining (1) large-scale harmonization and pooling of existing European cohorts systematically looking at multiple exposures and diseases, with (2) the collection of new high-resolution external and internal exposure data. Methods and tools to characterize the working life exposome will be developed and applied, including sensors, wearables, a harmonized job exposure matrix (EuroJEM), noninvasive biomonitoring, omics, data mining, and (bio)statistics. The toolbox of developed methods and knowledge will be made available to policy makers, occupational health practitioners, and scientists. Advanced knowledge on working life exposures in relation to NCDs will serve as a basis for evidence-based and cost-effective preventive policies and actions. The toolbox will also enable future scientists to further expand the working life exposome knowledge base.

4.
Artículo en Inglés | MEDLINE | ID: mdl-34948743

RESUMEN

The Vasilikos Energy Center (VEC) is a large hydrocarbon industrial hub actively operating in Cyprus. There is strong public interest by the communities surrounding VEC to engage with all stakeholders towards the sustainable development of hydrocarbon in the region. The methodological framework of the exposome concept would allow for the holistic identification of all relevant environmental exposures by engaging the most relevant stakeholders in industrially contaminated sites. The main objectives of this study were to: (i) evaluate the stakeholders' perceptions of the environmental and public health risks and recommended actions associated with the VEC hydrocarbon activities, and (ii) assess the stakeholders' understanding and interest towards exposome-based technologies for use in oil and gas applications. Methods: Six major groups of stakeholders were identified: local authorities, small-medium industries (SMIs) (including multi-national companies), small-medium enterprises (SMEs), academia/professional associations, government, and the general public residing in the communities surrounding the VEC. During 2019-2021, a suite of stakeholder engagement initiatives was deployed, including semi-structured interviews (n = 32), a community survey for the general public (n = 309), technical meetings, and workshops (n = 4). Results from the semi-structured interviews, technical meetings and workshops were analyzed through thematic analysis and results from the community survey were analyzed using descriptive statistics. Results: Almost all stakeholders expressed the need for the implementation of a systematic health monitoring system for the VEC broader area and its surrounding residential communities, including frequent measurements of air pollutant emissions. Moreover, stricter policies by the government about licensing and monitoring of hydrocarbon activities and proper communication to the public and the mass media emerged as important needs. The exposome concept was not practiced by the SMEs, but SMIs showed willingness to use it in the future as part of their research and development activities. Conclusions: The sustainable development of hydrocarbon exploitation and processing prospects for Cyprus involves the VEC. Continuous and active collaboration and mutual feedback among all stakeholders involved with the VEC is essential, as this may allow future environmental and occupational health initiatives to be formalized.


Asunto(s)
Salud Pública , Participación de los Interesados , Chipre , Exposición a Riesgos Ambientales , Hidrocarburos
5.
Artículo en Inglés | MEDLINE | ID: mdl-34360070

RESUMEN

Air pollution, noise, and green space are important environmental exposures, having been linked to a variety of specific health outcomes. However, there are few studies addressing overall early life development. To assess their effects, associations between developmental milestones for a large population of 0-4-year old children in The Netherlands and environmental exposures were explored. Developmental milestones and background characteristics were provided by Preventive Child Health Care (PCHC) and supplemented with data from Statistics Netherlands. Milestones were summarized and standardized into an aggregate score measuring global development. Four age groups were selected. Environmental exposures were assigned to geocoded addresses using publicly available maps for PM2.5, PM10, PMcoarse, NO2, EC, road traffic noise, and green space. Associations were investigated using single and multiple-exposure logistic regression models. 43,916 PCHC visits by 29,524 children were available. No consistent associations were found for air pollution and road traffic noise. Green space was positively associated in single and multiple-exposure models although it was not significant in all age groups (OR 1.01 (0.95; 1.08) (1 year) to 1.07 (1.01; 1.14) (2 years)). No consistent associations were found between air pollution, road traffic noise, and global child development. A positive association of green space was indicated.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Niño , Preescolar , Exposición a Riesgos Ambientales , Humanos , Lactante , Recién Nacido , Países Bajos , Material Particulado/análisis
6.
Ann Work Expo Health ; 65(9): 1011-1028, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34219141

RESUMEN

INTRODUCTION: Oil and gas workers have been shown to be at increased risk of chronic diseases including cancer, asthma, chronic obstructive pulmonary disease, and hearing loss, among others. Technological advances may be used to assess the external (e.g. personal sensors, smartphone apps and online platforms, exposure models) and internal exposome (e.g. physiologically based kinetic modeling (PBK), biomonitoring, omics), offering numerous possibilities for chronic disease prevention strategies and risk management measures. The objective of this study was to review the literature on these technologies, by focusing on: (i) evaluating their applicability for exposome research in the oil and gas industry, and (ii) identifying key challenges that may hamper the successful application of such technologies in the oil and gas industry. METHOD: A scoping review was conducted by identifying peer-reviewed literature with searches in MEDLINE/PubMed and SciVerse Scopus. Two assessors trained on the search strategy screened retrieved articles on title and abstract. The inclusion criteria used for this review were: application of the aforementioned technologies at a workplace in the oil and gas industry or, application of these technologies for an exposure relevant to the oil and gas industry but in another occupational sector, English language and publication period 2005-end of 2019. RESULTS: In total, 72 articles were included in this scoping review with most articles focused on omics and bioinformatics (N = 22), followed by biomonitoring and biomarkers (N = 20), external exposure modeling (N = 11), PBK modeling (N = 10), and personal sensors (N = 9). Several studies were identified in the oil and gas industry on the application of PBK models and biomarkers, mainly focusing on workers exposed to benzene. The application of personal sensors, new types of exposure models, and omics technology are still in their infancy with respect to the oil and gas industry. Nevertheless, applications of these technologies in other occupational sectors showed the potential for application in this sector. DISCUSSION AND CONCLUSION: New exposome technologies offer great promise for personal monitoring of workers in the oil and gas industry, but more applied research is needed in collaboration with the industry. Current challenges hindering a successful application of such technologies include (i) the technological readiness of sensors, (ii) the availability of data, (iii) the absence of standardized and validated methods, and (iv) the need for new study designs to study the development of disease during working life.


Asunto(s)
Exposoma , Exposición Profesional , Humanos , Industria del Petróleo y Gas , Medición de Riesgo , Tecnología
7.
BMC Public Health ; 21(1): 282, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33541323

RESUMEN

BACKGROUND: Greenspace has been associated with health benefits in many contexts. An important pathway may be through outdoor physical activity. We use a novel approach to examine the link between greenspace microenvironments and outdoor physical activity levels in the HEALS study conducted in Edinburgh (UK), the Netherlands, and Athens and Thessaloniki (Greece). METHODS: Using physical activity tracker recordings, 118 HEALS participants with young children were classified with regard to daily minutes of moderate to vigorous physical activity (MVPA); 60 were classified with regard to the metabolic equivalent task (MET)-minutes for each of the 1014 active trips they made. Greenspace indicators were generated for Normalised Difference Vegetation Index (NDVI), tree cover density (TCD), and green land use (GLU). We employed linear mixed-effects models to analyse (1) daily MVPA in relation to greenspace within 300 m and 1000 m of residential addresses and (2) trip MET-minutes in relation to average greenspace within a 50 m buffer of walking/cycling routes. Models were adjusted for activity, walkability, bluespace, age, sex, car ownership, dog ownership, season, weekday/weekend day, and local meteorology. RESULTS: There was no clear association between MVPA-minutes and any residential greenspace measure. For example, in fully adjusted models, a 10 percentage point increase in NDVI within 300 m of home was associated with a daily increase of 1.14 (95% CI - 0.41 to 2.70) minutes of MVPA. However, we did find evidence to indicate greenspace markers were positively linked to intensity and duration of activity: in fully adjusted models, 10 percentage point increases in trip NDVI, TCD, and GLU were associated with increases of 10.4 (95% CI: 4.43 to 16.4), 10.6 (95% CI: 4.96 to 16.3), and 3.36 (95% CI: 0.00 to 6.72) MET-minutes, respectively. The magnitude of associations with greenspace tended to be greater for cycling. CONCLUSIONS: More strenuous or longer walking and cycling trips occurred in environments with more greenspace, but levels of residential greenspace did not have a clear link with outdoor MVPA. To build on our research, we suggest future work examine larger, more diverse populations and investigate the influence of greenspace for trip purpose and route preference.


Asunto(s)
Parques Recreativos , Características de la Residencia , Animales , Preescolar , Perros , Europa (Continente) , Grecia , Humanos , Países Bajos
8.
Ann Work Expo Health ; 65(3): 246-254, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33215191

RESUMEN

This commentary explores the use of high-resolution data from new, miniature sensors to enrich models that predict exposures to chemical substances in the workplace. To optimally apply these sensors, one can expect an increased need for new models that will facilitate the interpretation and extrapolation of the acquired time-resolved data. We identified three key modelling approaches in the context of sensor data, namely (i) enrichment of existing time-integrated exposure models, (ii) (new) high-resolution (in time and space) empirical models, and (iii) new 'occupational dispersion' models. Each approach was evaluated in terms of their application in research, practice, and for policy purposes. It is expected that substance-specific sensor data will have the potential to transform workplace modelling by re-calibrating, refining, and validating existing (time-integrated) models. An increased shift towards 'sensor-driven' models is expected. It will allow for high-resolution modelling in time and space to identify peak exposures and will be beneficial for more individualized exposure assessment and real-time risk management. New 'occupational dispersion models' such as interpolation, computational fluid dynamic models, and assimilation techniques, together with sensor data, will be specifically useful. These techniques can be applied to develop site-specific concentration maps which calculate personal exposures and mitigate worker exposure through early warning systems, source finding and improved control design and control strategies. Critical development and investment needs for sensor data linked to (new) model development were identified such as (i) the generation of more sensor data with reliable sensor technologies (achieved by improved specificity, sensitivity, and accuracy of sensors), (ii) investing in statistical and new model developments, (iii) ensuring that we comply with privacy and security issues of concern, and (iv) acceptance by relevant target groups (such as employers and employees) and stimulation of these new technologies by policymakers and technology developers.


Asunto(s)
Exposición Profesional , Humanos , Lugar de Trabajo
9.
Ann Work Expo Health ; 65(1): 3-10, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33057665

RESUMEN

Will sensor-based exposure assessment be the future in workplace settings? Static instruments with embedded sensors are already applied to monitor levels of dangerous substances-in the context of acute health effects-at critical locations. However, with wearable, lightweight, miniaturized (low-cost) sensors developing quickly, much more is possible with sensors in relation to exposure assessment. Sensors can be applied in the work environment, on machines, or on employees and may include sensors that measure chemical exposures, but also sensors or other technologies that collect contextual information to support the exposure measurements. Like every technology it also has downsides. Sensors collect data on individuals that, depending on the purpose, need to be shared with others (e.g. health, safety and environment manager). One can imagine that people are afraid of misuse. To explore possible ethical and privacy issues that may come along with the introduction of sensors in the workplace, we organized a workshop with stakeholders (n = 32) to discuss three possible sensor-based scenarios in a structured way around five themes: purpose, efficacy, intrusiveness, proportionality, and fairness. The main conclusion of the discussions was that stakeholders currently see benefits in using sensors for applied targeted studies (short periods, clear reasons). In order to find acceptance for the implementation of sensors, all individuals affected by the sensors or its data need to be involved in the decisions on the purpose and application of sensors. Possible negative side effects need to be discussed and addressed. Continuous sensor-based monitoring of workers currently appears to be a bridge too far for the participants of this workshop.


Asunto(s)
Exposición Profesional , Privacidad , Humanos , Tecnología , Lugar de Trabajo
10.
Artículo en Inglés | MEDLINE | ID: mdl-33228125

RESUMEN

(1) Background: Small, lightweight, low-cost optical particulate matter (PM) monitors are becoming popular in the field of occupational exposure monitoring, because these devices allow for real-time static measurements to be collected at multiple locations throughout a work site as well as being used as wearables providing personal exposure estimates. Prior to deployment, devices should be evaluated to optimize and quantify measurement accuracy. However, this can turn out to be difficult, as no standardized methods are yet available and different deployments may require different evaluation procedures. To gain insight in the relevance of different variables that may affect the monitor readings, six PM monitors were selected based on current availability and evaluated in the laboratory; (2) Methods: Existing strategies that were judged appropriate for the evaluation of PM monitors were reviewed and seven evaluation variables were selected, namely the type of dust, within- and between-device variations, nature of the power supply, temperature, relative humidity, and exposure pattern (peak and constant). Each variable was tested and analyzed individually and, if found to affect the readings significantly, included in a final correction model specific to each monitor. Finally, the accuracy for each monitor after correction was calculated; (3) Results: The reference materials and exposure patterns were found to be main factors needing correction for most monitors. One PM monitor was found to be sufficiently accurate at concentrations up to 2000 µg/m3 PM2.5, with other monitors appropriate at lower concentrations. The average accuracy increased by up to three-fold compared to when the correction model did not include evaluation variables; (4) Conclusions: Laboratory evaluation and readings correction can greatly increase the accuracy of PM monitors and set boundaries for appropriate use. However, this requires identifying the relevant evaluation variables, which are heavily reliant on how the monitors are used in the workplace. This, together with the lack of current consensus on standardized procedures, shows the need for harmonized PM monitor evaluation methods for occupational exposure monitoring.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Exposición Profesional , Material Particulado , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/economía , Monitoreo del Ambiente/instrumentación , Humanos , Exposición Profesional/prevención & control , Material Particulado/análisis
11.
J Hazard Mater ; 394: 122569, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32240902

RESUMEN

Carbon nanotubes (CNTs) except MWCNT-7 have been classified as Group 3 ["Not classifiable as to its carcinogenicity to humans"] by the IARC. Despite considerable mechanistic evidence in vitro/in vivo, the classification highlights a general lack of data, especially among humans. In our previous study, we reported epigenetic changes in the MWCNT exposed workers. Here, we evaluated whether MWCNT can also cause alterations in aging related features including relative telomere length (TL) and/or mitochondrial copy number (mtDNAcn). Relative TL and mtDNAcn were measured on extracted DNA from peripheral blood from MWCNT exposed workers (N = 24) and non-exposed controls (N = 43) using a qPCR method. A higher mtDNAcn and longer TL were observed in MWCNT exposed workers when compared to controls. Independent of age, sex, smoking behavior, alcohol consumption and BMI, MWCNT-exposure was associated with an 18.30 % increase in blood TL (95 % CI: 7.15-30.62 %; p = 0.001) and 35.21 % increase in mtDNAcn (95 % CI: 19.12-53.46 %). Our results suggest that exposure to MWCNT can induce an increase in the mtDNAcn and TL; however, the mechanistic basis or consequence of such change requires further experimental studies.


Asunto(s)
ADN Mitocondrial , Nanotubos de Carbono , Telómero , Lugar de Trabajo , Variaciones en el Número de Copia de ADN , ADN Mitocondrial/genética , Humanos , Nanotubos de Carbono/toxicidad , Telómero/genética
13.
Environ Res ; 180: 108850, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31670081

RESUMEN

BACKGROUND/AIM: The exposome includes urban greenspace, which may affect health via a complex set of pathways, including reducing exposure to particulate matter (PM) and noise. We assessed these pathways using indoor exposure monitoring data from the HEALS study in four European urban areas (Edinburgh, UK; Utrecht, Netherlands; Athens and Thessaloniki, Greece). METHODS: We quantified three metrics of residential greenspace at 50 m and 100 m buffers: Normalised Difference Vegetation Index (NDVI), annual tree cover density, and surrounding green land use. NDVI values were generated for both summer and the season during which the monitoring took place. Indoor PM2.5 and noise levels were measured by Dylos and Netatmo sensors, respectively, and subjective noise annoyance was collected by questionnaire on an 11-point scale. We used random-effects generalised least squares regression models to assess associations between greenspace and indoor PM2.5 and noise, and an ordinal logistic regression to model the relationship between greenspace and road noise annoyance. RESULTS: We identified a significant inverse relationship between summer NDVI and indoor PM2.5 (-1.27 µg/m3 per 0.1 unit increase [95% CI -2.38 to -0.15]) using a 100 m residential buffer. Reduced (i.e., <1.0) odds ratios (OR) of road noise annoyance were associated with increasing summer (OR = 0.55 [0.31 to 0.98]) and season-specific (OR = 0.55 [0.32 to 0.94]) NDVI levels, and tree cover density (OR = 0.54 [0.31 to 0.93] per 10 percentage point increase), also at a 100 m buffer. In contrast to these findings, we did not identify any significant associations between greenspace and indoor noise in fully adjusted models. CONCLUSIONS: We identified reduced indoor levels of PM2.5 and noise annoyance, but not overall noise, with increasing outdoor levels of certain greenspace indicators. To corroborate our findings, future research should examine the effect of enhanced temporal resolution of greenspace metrics during different seasons, characterise the configuration and composition of green areas, and explore mechanisms through mediation modelling.


Asunto(s)
Contaminación del Aire Interior , Exposición a Riesgos Ambientales/estadística & datos numéricos , Ruido , Material Particulado , Contaminantes Atmosféricos , Grecia , Países Bajos , Oportunidad Relativa
14.
Ann Work Expo Health ; 63(9): 1029-1045, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31587034

RESUMEN

Dustiness is not an intrinsic physically defined property of a powder, but the tendency of particles to become airborne in response to mechanical and/or aerodynamic stimuli. The present study considers a set of 10 physical properties to which the powder dustiness can be attributed. Through a preliminary investigation of a standardized continuous drop test scenario, we present first set of results on the varying degrees or weights of influence of these properties on the aerosolization tendency of powder particles. The inter-particle distance is found to be the most dominant property controlling the particle aerosolization, followed by the ability of powder particles to get electrostatically charged. We observe the kinetics involved during powder aerosolization to be governed by two ratios: drag force/cohesive force and drag force/gravitational force. The converging tendencies in these initial results indicate that these physical properties can be used to model dustiness of falling powder, which can eventually be used in risk assessment tools for an efficient exposure estimation of the powders.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Polvo/análisis , Exposición Profesional/análisis , Polvos/análisis , Aerosoles/análisis , Humanos , Tamaño de la Partícula
15.
Indoor Air ; 29(3): 450-459, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30756427

RESUMEN

The aim of this study was to (a) develop a method for converting particle number concentrations (PNC) obtained by Dylos to PM2.5 mass concentrations, (b) compare this conversion with similar methods available in the literature, and (c) compare Dylos PM2.5 obtained using all available conversion methods with gravimetric samples. Data were collected in multiple residences in three European countries using the Dylos and an Aerodynamic Particle Sizer (APS, TSI) in the Netherlands or an optical particle counter (OPC, GRIMM) in Greece. Two statistical fitted curves were developed based on Dylos PNC and either an APS or an OPC particle mass concentrations (PMC). In addition, at the homes of 16 volunteers (UK and Netherlands), Dylos measurements were collected along with gravimetric samples. The Dylos PNC were transformed to PMC using all the fitted curves obtained during this study (and three found in the literature) and were compared with gravimetric samples. The method developed in the present study using an OPC showed the highest correlation (Pearson (R) = 0.63, Concordance (ρc ) = 0.61) with gravimetric data. The other methods resulted in an underestimation of PMC compared to gravimetric measurements (R = 0.65-0.55, ρc  = 0.51-0.24). In conclusion, estimation of PM2.5 concentrations using the Dylos is acceptable for indicative purposes.


Asunto(s)
Contaminación del Aire Interior/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Gravitación , Grecia , Vivienda , Humanos , Países Bajos , Reproducibilidad de los Resultados , Reino Unido
16.
Ann Work Expo Health ; 63(2): 148-157, 2019 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-30615066

RESUMEN

INTRODUCTION: Knowledge on the exposure characteristics, including release of nanomaterials, is especially needed in the later stages of nano-enabled products' life cycles to perform better occupational risk assessments. The objective of this study was to assess the concentrations during sawing and drilling in car bumpers containing multi-walled carbon nanotubes (MWCNTs) and nanosized organic pigment (OP) under variable realistic workplace situations related to the ventilation in the room and machine settings. METHODS: Twelve different experiments were performed in triplicate (N = 36) using tools powered by induction engines that allow interference-free particle measurements. A DiSCmini was used to measure particle number concentrations, whereas particle size distributions were measured using Aerodynamic Particle Sizer (TSI), Scanning Mobility Particle Sizer (TSI), and Electrical Low Pressure Impactor (Dekati). In addition, inhalable particles were sampled using IOM samplers on filters for scanning electron microscope/energy-dispersive X-ray spectrometry (SEM/EDX) analyses. Data were analysed to estimate the effects of individual exposure determinants, in a two-stage modelling strategy using Autoregressive Integrated Moving Average models (stage 1) and subsequently combining first stage results in simulations using multiple linear regression models (stage 2). RESULTS: In sawing experiments, partly melted carbon-rich particles (mainly ~2 to ~8 µm) were identified with SEM/EDX, whereas drilling experiments revealed no activity-related particles. In addition, no pristine engineered nanoparticles (MWCNTs and OP) were observed to be liberated from the matrix. Statistical analyses showed significant effects of a higher sawing speed, a reduction in air concentration due to mechanical ventilation, and less exposure during sawing of car bumpers containing MWCNTs compared to bumpers containing OP. CONCLUSION: The experiments in this study give an indication of the effects of different abrasive activities (sawing, drilling), machine settings (sawing speed, drill size), mechanical ventilation, and material characteristics on the manufactured nano-objects, their agglomerates, and aggregates concentration levels.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Colorantes/análisis , Nanotubos de Carbono/análisis , Exposición Profesional/análisis , Automóviles , Monitoreo del Ambiente/métodos , Humanos , Industrias , Microscopía Electrónica de Rastreo , Nanocompuestos/análisis , Nanoestructuras , Tamaño de la Partícula , Análisis de Regresión , Espectrometría por Rayos X , Lugar de Trabajo
17.
Ann Work Expo Health ; 62(8): 907-922, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30084914

RESUMEN

This review describes an evaluation of the effectiveness of Risk Management Measures (RMM) for nanomaterials in the workplace. Our aim was to review the effectiveness of workplace RMM for nanomaterials and to determine whether established effectiveness values of conventional chemical substances applied for modelling purposes should be adopted or revised based on available evidence. A literature review was conducted to collate nano-specific data on workplace RMM. Besides the quantitative efficacy values, the library was populated with important covariables such as the study design, measurement type, size of particles or agglomerates/aggregates, and metrics applied. In total 770 records were retrieved from 41 studies for three general types of RMM (engineering controls, respiratory equipment and skin protective equipment: gloves and clothing). Records were found for various sub-categories of the different types of RMM although the number of records for each was generally limited. Significant variation in efficacy values was observed within RMM categories while also considering the respective covariables. Based on a comparative evaluation with efficacy values applied for conventional substances, adapted efficacy values are proposed for various RMM sub-categories (e.g. containment, fume cupboards, FFP2 respirators). It is concluded that RMM efficacy data for nanomaterials are limited and often inconclusive to propose effectiveness values. This review also shed some light on the current knowledge gaps for nanomaterials related to RMM effectiveness (e.g. ventilated walk-in enclosures and clean rooms) and the challenges foreseen to derive reliable RMM efficacy values from aggregated data in the future.


Asunto(s)
Exposición por Inhalación/prevención & control , Nanoestructuras/efectos adversos , Exposición Profesional/prevención & control , Gestión de Riesgos/normas , Lugar de Trabajo/normas , Humanos , Exposición por Inhalación/análisis , Nanoestructuras/análisis , Exposición Profesional/análisis , Ropa de Protección/normas , Ventilación/normas
18.
J Nanopart Res ; 20(2): 48, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29497347

RESUMEN

Fume hoods are one of the most common types of equipment applied to reduce the potential of particle exposure in laboratory environments. A number of previous studies have shown particle release during work with nanomaterials under fume hoods. Here, we assessed laboratory workers' inhalation exposure during synthesis and handling of CuO, TiO2 and ZnO in a fume hood. In addition, we tested the capacity of a fume hood to prevent particle release to laboratory air during simulated spillage of different powders (silica fume, zirconia TZ-3Y and TiO2). Airborne particle concentrations were measured in near field, far field, and in the breathing zone of the worker. Handling CuO nanoparticles increased the concentration of small particles (< 58 nm) inside the fume hood (up to 1 × 105 cm-3). Synthesis, handling and packaging of ZnO and TiO2 nanoparticles did not result in detectable particle release to the laboratory air. Simulated powder spills showed a systematic increase in the particle concentrations inside the fume hood with increasing amount of material and drop height. Despite powder spills were sometimes observed to eject into the laboratory room, the spill events were rarely associated with notable release of particles from the fume hood. Overall, this study shows that a fume hood generally offers sufficient exposure control during synthesis and handling of nanomaterials. An appropriate fume hood with adequate sash height and face velocity prevents 98.3% of particles release into the surrounding environment. Care should still be made to consider spills and high cleanliness to prevent exposure via resuspension and inadvertent exposure by secondary routes.

19.
Occup Environ Med ; 75(5): 351-358, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29440327

RESUMEN

OBJECTIVES: The increase in production of multiwalled carbon nanotubes (MWCNTs) has led to growing concerns about health risks. In this study, we assessed the association between occupational exposure to MWCNTs and cardiovascular biomarkers. METHODS: A cross-sectional study was performed among 22 workers of a company commercially producing MWCNTs (subdivided into lab personnel with low or high exposure and operators), and a gender and age-matched unexposed population (n=42). Exposure to MWCNTs and 12 cardiovascular markers were measured in participants' blood (phase I). In a subpopulation of 13 exposed workers and six unexposed workers, these measures were repeated after 5 months (phase II). We analysed associations between MWCNT exposure and biomarkers of cardiovascular risk, adjusted for age, body mass index, sex and smoking. RESULTS: We observed an upward trend in the concentration of endothelial damage marker intercellular adhesion molecule-1 (ICAM-1), with increasing exposure to MWCNTs in both phases. The operator category showed significantly elevated ICAM-1 geometric mean ratios (GMRs) compared with the controls (phase I: GMR=1.40, P=1.30E-3; phase II: GMR=1.37, P=0.03). The trends were significant both across worker categories (phase I: P=1.50E-3; phase II: P=0.01) and across measured GM MWCNT concentrations (phase I: P=3.00E-3; phase II: P=0.01). No consistent significant associations were found for the other cardiovascular markers. CONCLUSION: The associations between MWCNT exposure and ICAM-1 indicate endothelial activation and an increased inflammatory state in workers with MWCNT exposure.


Asunto(s)
Sistema Cardiovascular/efectos de los fármacos , Industria Química , Nanotubos de Carbono/efectos adversos , Exposición Profesional/efectos adversos , Adulto , Biomarcadores/sangre , Estudios de Casos y Controles , Estudios Transversales , Endotelio Vascular/efectos de los fármacos , Femenino , Humanos , Molécula 1 de Adhesión Intercelular/sangre , Masculino , Exposición Profesional/estadística & datos numéricos , Encuestas y Cuestionarios
20.
Nanotoxicology ; 11(9-10): 1195-1210, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29191063

RESUMEN

This study was designed to assess the epigenetic alterations in blood cells, induced by occupational exposure to multi-wall carbon nanotubes (MWCNT). The study population comprised of MWCNT-exposed workers (n=24) and unexposed controls (n=43) from the same workplace. We measured global DNA methylation/hydroxymethylation levels on the 5th cytosine residues using a validated liquid chromatography tandem-mass spectrometry (LC-MS/MS) method. Sequence-specific methylation of LINE1 retrotransposable element 1 (L1RE1) elements, and promoter regions of functionally important genes associated with epigenetic regulation [DNA methyltransferase-1 (DNMT1) and histone deacetylase 4 (HDAC4)], DNA damage/repair and cell cycle pathways [nuclear protein, coactivator of histone transcription/ATM serine/threonine kinase (NPAT/ATM)], and a potential transforming growth factor beta (TGF-ß) repressor [SKI proto-oncogene (SKI)] were studied using bisulfite pyrosequencing. Analysis of global DNA methylation levels and hydroxymethylation did not reveal significant difference between the MWCNT-exposed and control groups. No significant changes in Cytosine-phosphate-Guanine (CpG) site methylation were observed for the LINE1 (L1RE1) elements. Further analysis of gene-specific DNA methylation showed a significant change in methylation for DNMT1, ATM, SKI, and HDAC4 promoter CpGs in MWCNT-exposed workers. Since DNA methylation plays an important role in silencing/regulation of the genes, and many of these genes have been associated with occupational and smoking-induced diseases and cancer (risk), aberrant methylation of these genes might have a potential effect in MWCNT-exposed workers.


Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Nanotubos de Carbono/toxicidad , Exposición Profesional/efectos adversos , Adulto , Estudios Transversales , ADN/genética , ADN (Citosina-5-)-Metiltransferasa 1/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Femenino , Humanos , Elementos de Nucleótido Esparcido Largo/genética , Masculino , Exposición Profesional/análisis , Proto-Oncogenes Mas , Factor de Crecimiento Transformador beta/genética , Lugar de Trabajo/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...