Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(43): 29842-29849, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37888766

RESUMEN

Three novel TADF (thermally activated delayed fluorescence) emitters based on the well-studied Qx-Ph-DMAC fluorophore are designed and synthesized. The photophysical properties of these materials are studied from a theoretical and experimental point of view, demonstrating the cumulative effects of multiple small modifications that combine to afford significantly improved TADF performance. First, an extra phenyl ring is added to the acceptor part of Qx-Ph-DMAC to increase the conjugation length, resulting in BQx-Ph-DMAC, which acts as an intermediate molecular structure. Next, an electron-deficient coumarin unit is incorporated to fortify the electron accepting ability, affording ChromPy-Ph-DMAC with red-shifted emission. Finally, the conjugated system is further enlarged by 'locking' the molecular structure, generating DBChromQx-DMAC with further red-shifted emission. The addition of the coumarin unit significantly impacts the charge-transfer excited state energy levels with little effect on the locally excited states, resulting in a decrease of the singlet-triplet energy gap. As a result, the two coumarin-based emitters show considerably improved TADF performance in 1 w/w% zeonex films when compared to the initial Qx-Ph-DMAC structure. 'Locking' the molecular structure further lowers the singlet-triplet energy gap, resulting in more efficient reverse intersystem crossing and increasing the contribution of TADF to the total emission.

2.
Phys Chem Chem Phys ; 25(3): 2386-2400, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36597999

RESUMEN

In this study, manganese substituted strontium hexaferrite (SrFe12-xMnxO19; x = 0, 3, 5, and 7) prepared by the sol-gel auto-combustion method are studied. We observed that the substituted Mn preferentially goes to the 2a and 12k sites of Fe. Raman modes related to the 12k site suggest the stiffening of the lattice. The transformation of the grain's shape from hexagonal (x = 0 and 3) to rhombohedral (x = 7) was observed, as shown in the micrographs obtained from FESEM. The thermomagnetic curves show the shift of TC to lower temperatures with the increase in the Mn content. From x = 5 onwards, the growth of another magnetic phase (FiM2) of lower coercivity apart from the parent phase (FiM1) of higher coercivity is seen. The FiM2 phase was found to increase with the Mn content in the sample (16.4(3)% for x = 5 but 66.2(5)% for x = 7). Although the magnetization for both FiM1 and FiM2 decreases with the increase in temperature, both magnetic phases behave in contrast to each other for x = 5 and x = 7. The study suggests a transformation of the compound from high magnetic anisotropy (x = 0) to low magnetic anisotropy (x = 7). The x = 5 composition sample displays the highest value of the first-order ME coefficient (0.83(2) mV × cm-1 × Oe-1). The observed value for x = 5 composition is ∼2.5 times higher than that of the parent x = 0 composition sample (0.33(2) mV × cm-1 × Oe-1). The studies thus suggest that the x = 5 composition is one of the viable candidates for magnetoelectric applications.

3.
Indian J Med Res ; 143(2): 245-6, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27121525
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA