Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain ; 146(4): 1496-1510, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36073231

RESUMEN

The protein phosphatase 2A complex (PP2A), the major Ser/Thr phosphatase in the brain, is involved in a number of signalling pathways and functions, including the regulation of crucial proteins for neurodegeneration, such as alpha-synuclein, tau and LRRK2. Here, we report the identification of variants in the PTPA/PPP2R4 gene, encoding a major PP2A activator, in two families with early-onset parkinsonism and intellectual disability. We carried out clinical studies and genetic analyses, including genome-wide linkage analysis, whole-exome sequencing, and Sanger sequencing of candidate variants. We next performed functional studies on the disease-associated variants in cultured cells and knock-down of ptpa in Drosophila melanogaster. We first identified a homozygous PTPA variant, c.893T>G (p.Met298Arg), in patients from a South African family with early-onset parkinsonism and intellectual disability. Screening of a large series of additional families yielded a second homozygous variant, c.512C>A (p.Ala171Asp), in a Libyan family with a similar phenotype. Both variants co-segregate with disease in the respective families. The affected subjects display juvenile-onset parkinsonism and intellectual disability. The motor symptoms were responsive to treatment with levodopa and deep brain stimulation of the subthalamic nucleus. In overexpression studies, both the PTPA p.Ala171Asp and p.Met298Arg variants were associated with decreased PTPA RNA stability and decreased PTPA protein levels; the p.Ala171Asp variant additionally displayed decreased PTPA protein stability. Crucially, expression of both variants was associated with decreased PP2A complex levels and impaired PP2A phosphatase activation. PTPA orthologue knock-down in Drosophila neurons induced a significant impairment of locomotion in the climbing test. This defect was age-dependent and fully reversed by L-DOPA treatment. We conclude that bi-allelic missense PTPA variants associated with impaired activation of the PP2A phosphatase cause autosomal recessive early-onset parkinsonism with intellectual disability. Our findings might also provide new insights for understanding the role of the PP2A complex in the pathogenesis of more common forms of neurodegeneration.


Asunto(s)
Discapacidad Intelectual , Trastornos Parkinsonianos , Animales , Encéfalo/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Discapacidad Intelectual/genética , Trastornos Parkinsonianos/genética , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Fosfoproteínas Fosfatasas/metabolismo
2.
Brain Commun ; 4(4): fcac175, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35855480

RESUMEN

Multiple system atrophy is considered a sporadic disease, but neuropathologically confirmed cases with a family history of parkinsonism have been occasionally described. Here we report a North-Bavarian (colloquially, Lion's tail region) six-generation pedigree, including neuropathologically confirmed multiple system atrophy and Parkinson's disease with dementia. Between 2012 and 2020, we examined all living and consenting family members of age and calculated the risk of prodromal Parkinson's disease in those without overt parkinsonism. The index case and one paternal cousin with Parkinson's disease with dementia died at follow-up and underwent neuropathological examination. Genetic analysis was performed in both and another family member with Parkinson's disease. The index case was a female patient with cerebellar variant multiple system atrophy and a positive maternal and paternal family history for Parkinson's disease and dementia in multiple generations. The families of the index case and her spouse were genealogically related, and one of the spouse's siblings met the criteria for possible prodromal Parkinson's disease. Neuropathological examination confirmed multiple system atrophy in the index case and advanced Lewy body disease, as well as tau pathology in her cousin. A comprehensive analysis of genes known to cause hereditary forms of parkinsonism or multiple system atrophy lookalikes was unremarkable in the index case and the other two affected family members. Here, we report an extensive European pedigree with multiple system atrophy and Parkinson`s disease suggesting a complex underlying α-synucleinopathy as confirmed on neuropathological examination. The exclusion of known genetic causes of parkinsonism or multiple system atrophy lookalikes suggests that variants in additional, still unknown genes, linked to α-synucleinopathy lesions underlie such neurodegenerative clustering.

4.
Parkinsonism Relat Disord ; 94: 54-61, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890876

RESUMEN

INTRODUCTION: Sixteen subjects with biallelic WARS2 variants encoding the tryptophanyl mitochondrial aminoacyl-tRNA synthetase, presenting with a neonatal- or infantile-onset mitochondrial disease, have been reported to date. Here we present six novel cases with WARS2-related diseases and expand the spectrum to later onset phenotypes including dopa-responsive early-onset parkinsonism and progressive myoclonus-ataxia. METHODS: Six individuals from four families underwent whole-exome sequencing within research and diagnostic settings. Following the identification of a genetic defect, in-depth phenotyping and protein expression studies were performed. RESULTS: A relatively common (gnomAD MAF = 0.0033) pathogenic p.(Trp13Gly) missense variant in WARS2 was detected in trans in all six affected individuals in combination with different pathogenic alleles (exon 2 deletion in family 1; p.(Leu100del) in family 2; p.(Gly50Asp) in family 3; and p.(Glu208*) in family 4). Two subjects presented with action tremor around age 10-12 years and developed tremor-dominant parkinsonism with prominent neuropsychiatric features later in their 20s. Two subjects presented with a progressive myoclonus-ataxia dominant phenotype. One subject presented with spasticity, choreo-dystonia, myoclonus, and speech problems. One subject presented with speech problems, ataxia, and tremor. Western blotting analyses in patient-derived fibroblasts showed a markedly decreased expression of the full-length WARS2 protein in both subjects carrying p.(Trp13Gly) and an exon-2 deletion in compound heterozygosity. CONCLUSIONS: This study expands the spectrum of the disease to later onset phenotypes of early-onset tremor-dominant parkinsonism and progressive myoclonus-ataxia phenotypes.


Asunto(s)
Mioclonía , Trastornos Parkinsonianos , Degeneraciones Espinocerebelosas , Triptófano-ARNt Ligasa , Ataxia , Dihidroxifenilalanina , Humanos , Mutación , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/genética , Fenotipo , Temblor , Triptófano-ARNt Ligasa/genética
5.
Ann Neurol ; 89(3): 485-497, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33236446

RESUMEN

OBJECTIVE: The study was undertaken to identify a monogenic cause of early onset, generalized dystonia. METHODS: Methods consisted of genome-wide linkage analysis, exome and Sanger sequencing, clinical neurological examination, brain magnetic resonance imaging, and protein expression studies in skin fibroblasts from patients. RESULTS: We identified a heterozygous variant, c.388G>A, p.Gly130Arg, in the eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2) gene, segregating with early onset isolated generalized dystonia in 5 patients of a Taiwanese family. EIF2AK2 sequencing in 191 unrelated patients with unexplained dystonia yielded 2 unrelated Caucasian patients with an identical heterozygous c.388G>A, p.Gly130Arg variant, occurring de novo in one case, another patient carrying a different heterozygous variant, c.413G>C, p.Gly138Ala, and one last patient, born from consanguineous parents, carrying a third, homozygous variant c.95A>C, p.Asn32Thr. These 3 missense variants are absent from gnomAD, and are located in functional domains of the encoded protein. In 3 patients, additional neurological manifestations were present, including intellectual disability and spasticity. EIF2AK2 encodes a kinase (protein kinase R [PKR]) that phosphorylates eukaryotic translation initiation factor 2 alpha (eIF2α), which orchestrates the cellular stress response. Our expression studies showed abnormally enhanced activation of the cellular stress response, monitored by PKR-mediated phosphorylation of eIF2α, in fibroblasts from patients with EIF2AK2 variants. Intriguingly, PKR can also be regulated by PRKRA (protein interferon-inducible double-stranded RNA-dependent protein kinase activator A), the product of another gene causing monogenic dystonia. INTERPRETATION: We identified EIF2AK2 variants implicated in early onset generalized dystonia, which can be dominantly or recessively inherited, or occur de novo. Our findings provide direct evidence for a key role of a dysfunctional eIF2α pathway in the pathogenesis of dystonia. ANN NEUROL 2021;89:485-497.


Asunto(s)
Trastornos Distónicos/genética , Fibroblastos/metabolismo , eIF-2 Quinasa/genética , Adolescente , Adulto , Edad de Inicio , Pueblo Asiatico , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Trastornos Distónicos/metabolismo , Trastornos Distónicos/fisiopatología , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mutación Missense , Linaje , Población Blanca , Secuenciación del Exoma , Adulto Joven , eIF-2 Quinasa/metabolismo
6.
Neurobiol Aging ; 94: 311.e5-311.e10, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32527607

RESUMEN

The aim of this study was to explore whether variants in LRP10, recently associated with Parkinson's disease and dementia with Lewy bodies, are observed in 2 large cohorts (discovery and validation cohort) of patients with progressive supranuclear palsy (PSP). A total of 950 patients with PSP were enrolled: 246 patients with PSP (n = 85 possible (35%), n = 128 probable (52%), n = 33 definite (13%)) in the discovery cohort and 704 patients with definite PSP in the validation cohort. Sanger sequencing of all LRP10 exons and exon-intron boundaries was performed in the discovery cohort, and whole-exome sequencing was performed in the validation cohort. Two patients from the discovery cohort and 8 patients from the validation cohort carried a rare, heterozygous, and possibly pathogenic LRP10 variant (p.Gly326Asp, p.Asp389Asn, and p.Arg158His, p.Cys220Tyr, p.Thr278Ala, p.Gly306Asp, p.Glu486Asp, p.Arg554∗, p.Arg661Cys). In conclusion, possibly pathogenic LRP10 variants occur in a small fraction of patients with PSP and may be overrepresented in these patients compared with controls. This suggests that possibly pathogenic LRP10 variants may play a role in the development of PSP.


Asunto(s)
Variación Genética/genética , Proteínas Relacionadas con Receptor de LDL/genética , Parálisis Supranuclear Progresiva/genética , Anciano , Estudios de Cohortes , Exones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Secuenciación del Exoma
7.
J Alzheimers Dis ; 76(3): 1161-1170, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32597809

RESUMEN

BACKGROUND: Rare variants in the low-density lipoprotein receptor related protein 10 gene (LRP10) have recently been implicated in the etiology of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). OBJECTIVE: We searched for LRP10 variants in a new series of brain donors with dementia and Lewy pathology (LP) at autopsy, or dementia and parkinsonism without LP but with various other neurodegenerative pathologies. METHODS: Sanger sequencing of LRP10 was performed in 233 donors collected by the Netherlands Brain Bank. RESULTS: Rare, possibly pathogenic heterozygous LRP10 variants were present in three patients: p.Gly453Ser in a patient with mixed Alzheimer's disease (AD)/Lewy body disease (LBD), p.Arg151Cys in a DLB patient, and p.Gly326Asp in an AD patient without LP. All three patients had a positive family history for dementia or PD. CONCLUSION: Rare LRP10 variants are present in some patients with dementia and different brain pathologies including DLB, mixed AD/LBD, and AD. These findings suggest a role for LRP10 across a broad neurodegenerative spectrum.


Asunto(s)
Proteínas Relacionadas con Receptor de LDL/genética , Enfermedad por Cuerpos de Lewy/genética , Enfermedad de Parkinson/patología , Fenotipo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Heterocigoto , Humanos , Enfermedad por Cuerpos de Lewy/patología , Masculino , Enfermedad de Parkinson/genética
8.
Parkinsonism Relat Disord ; 67: 24-26, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31621601
9.
Parkinsonism Relat Disord ; 66: 228-231, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31431325

RESUMEN

OBJECTIVE: Recessive mutations in the Gap Junction Protein Gamma 2 (GJC2) gene cause Pelizaeus-Merzbacher-like disease type 1, a severe infantile-onset hypomyelinating leukodystrophy. Milder, late-onset phenotypes including complicated spastic paraplegia in one family (SPG44), and mild tremor in one case, were reported associated to GJC2 homozygous missense mutations. Here, we report a new family with two siblings carrying a different homozygous GJC2 mutation, presenting with late-onset ataxic and pyramidal disturbances, and parkinsonism in one of them. METHODS: Two affected siblings were studied by neurological examination and brain MRI. Genetic analyses included genome-wide homozygosity mapping in both siblings, and whole exome sequencing in one sib. The resulting candidate gene variant was validated by Sanger sequencing. RESULTS: The affected siblings share a novel homozygous GJC2 missense mutation (c.820G>C, p.Val274Leu), predicted as pathogenic by all used in-silico tools. Brain MRI showed hyperintense signal in T2-weighted images in the internal capsule and subcortical and periventricular white matter, consistent with hypomyelination. CONCLUSIONS: Our findings confirm and further expand the late-onset phenotypes of GJC2 mutations, to include prominent ataxia, pyramidal disturbances and mild parkinsonism, and confirm the distinctive associated MRI pattern.


Asunto(s)
Ataxia/genética , Conexinas/genética , Trastornos Parkinsonianos/genética , Sustancia Blanca/patología , Edad de Inicio , Anciano , Ataxia/patología , Ataxia/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mutación Missense , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/fisiopatología , Linaje , Fenotipo , Hermanos , Turquía , Sustancia Blanca/diagnóstico por imagen
10.
Mov Disord ; 33(11): 1814-1819, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30398675

RESUMEN

BACKGROUND: The genetic bases of PD in sub-Saharan African (SSA) populations remain poorly characterized, and analysis of SSA families with PD might lead to the discovery of novel disease-related genes. OBJECTIVES: To investigate the clinical features and identify the disease-causing gene in a black South African family with 3 members affected by juvenile-onset parkinsonism and intellectual disability. METHODS: Clinical evaluation, neuroimaging studies, whole-exome sequencing, homozygosity mapping, two-point linkage analysis, and Sanger sequencing of candidate variants. RESULT: A homozygous 28-nucleotide frameshift deletion in the PTRHD1 coding region was identified in the 3 affected family members and linked to the disease with genome-wide significant evidence. PTRHD1 was recently nominated as the disease-causing gene in two Iranian families, each containing 2 siblings with similar phenotypes and homozygous missense mutations. CONCLUSION: Together with the previous reports, we provide conclusive evidence that loss-of-function mutations in PTRHD1 cause autosomal-recessive juvenile parkinsonism and intellectual disability. © 2018 International Parkinson and Movement Disorder Society.


Asunto(s)
Salud de la Familia , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Mutación/genética , Trastornos Parkinsonianos/genética , Adulto , África del Sur del Sahara , Análisis Mutacional de ADN , Femenino , Humanos , Discapacidad Intelectual/complicaciones , Masculino , Trastornos Parkinsonianos/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...