Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Front Mol Biosci ; 10: 1125438, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006612

RESUMEN

Schistosomes can survive in mammalian hosts for many years, and this is facilitated by released parasite products that modulate the host's immune system. Many of these products are glycosylated and interact with host cells via C-type lectin receptors (CLRs). We previously reported on specific fucose-containing glycans present on extracellular vesicles (EVs) released by schistosomula, the early juvenile life stage of the schistosome, and the interaction of these EVs with the C-type lectin receptor Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN or CD209). EVs are membrane vesicles with a size range between 30-1,000 nm that play a role in intercellular and interspecies communication. Here, we studied the glycosylation of EVs released by the adult schistosome worms. Mass spectrometric analysis showed that GalNAcß1-4GlcNAc (LacDiNAc or LDN) containing N-glycans were the dominant glycan type present on adult worm EVs. Using glycan-specific antibodies, we confirmed that EVs from adult worms were predominantly associated with LDN, while schistosomula EVs displayed a highly fucosylated glycan profile. In contrast to schistosomula EV that bind to DC-SIGN, adult worm EVs are recognized by macrophage galactose-type lectin (MGL or CD301), and not by DC-SIGN, on CLR expressing cell lines. The different glycosylation profiles of adult worm- and schistosomula-derived EVs match with the characteristic glycan profiles of the corresponding life stages and support their distinct roles in schistosome life-stage specific interactions with the host.

2.
J Extracell Vesicles ; 12(1): e12298, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36604533

RESUMEN

Over the last decade, research interest in defining how extracellular vesicles (EVs) shape cross-species communication has grown rapidly. Parasitic helminths, worm species found in the phyla Nematoda and Platyhelminthes, are well-recognised manipulators of host immune function and physiology. Emerging evidence supports a role for helminth-derived EVs in these processes and highlights EVs as an important participant in cross-phylum communication. While the mammalian EV field is guided by a community-agreed framework for studying EVs derived from model organisms or cell systems [e.g., Minimal Information for Studies of Extracellular Vesicles (MISEV)], the helminth community requires a supplementary set of principles due to the additional challenges that accompany working with such divergent organisms. These challenges include, but are not limited to, generating sufficient quantities of EVs for descriptive or functional studies, defining pan-helminth EV markers, genetically modifying these organisms, and identifying rigorous methodologies for in vitro and in vivo studies. Here, we outline best practices for those investigating the biology of helminth-derived EVs to complement the MISEV guidelines. We summarise community-agreed standards for studying EVs derived from this broad set of non-model organisms, raise awareness of issues associated with helminth EVs and provide future perspectives for how progress in the field will be achieved.


Asunto(s)
Vesículas Extracelulares , Helmintos , Animales , Humanos , Vesículas Extracelulares/fisiología , Reproducibilidad de los Resultados , Mamíferos
3.
J Immunol Res ; 2022: 5473763, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35434142

RESUMEN

In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to their role in pathogen-host communication. However, the availability of EVs from these parasitic worms is often limited due to the restricted occurrence and culturing possibilities of these organisms. Schistosoma mansoni is one of several helminths that have been shown to release EVs affecting the immune response of their host. Further investigation of mechanisms underlying these EV-induced effects warrants separation of EVs from other components of the helminth excretory/secretory products. However, isolation of high-purity EVs often come to the expense of reduced EV yield. We therefore aimed to develop an optimized protocol for isolation of EVs from S. mansoni schistosomula and adult worms with respect to purity, concentration, and yield. We tested the use of small (1.7 ml) iodixanol density gradients and demonstrated that this enabled western blot-based analysis of the EV marker protein tetraspanin-2 (TSP-2) in gradient fractions without additional concentration steps. Moreover, the concentration and yield of EVs obtained with small iodixanol gradients were higher compared to medium-sized (4.3 ml) or conventional large-sized (12 ml) gradients. Additionally, we provide evidence that iodixanol is preferred over sucrose as medium for the small density gradients, because EVs in iodixanol gradients reached equilibrium much faster (2 hours) and iodixanol but not sucrose was suitable for purification of schistosomula EVs. Finally, we demonstrate that the small iodixanol gradients were able to separate adult worm EVs from non-EV contaminants such as the blood digestion product hemozoin. Our optimized small iodixanol density gradient allows to simultaneously separate and concentrate EVs while reducing handling time and EV loss and can be applied for EVs from helminths and other limited EV sources.


Asunto(s)
Vesículas Extracelulares , Schistosoma mansoni , Animales , Biomarcadores/metabolismo , Western Blotting , Proteínas
4.
PLoS Negl Trop Dis ; 15(11): e0009981, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34793443

RESUMEN

Extracellular Vesicles (EVs) are an integral component of cellular/organismal communication and have been found in the excreted/secreted (ES) products of both protozoan and metazoan parasites. Within the blood fluke schistosomes, EVs have been isolated from egg, schistosomula, and adult lifecycle stages. However, the role(s) that EVs have in shaping aspects of parasite biology and/or manipulating host interactions is poorly defined. Herein, we characterise the most abundant EV-enriched protein in Schistosoma mansoni tissue-migrating schistosomula (Schistosoma mansoni Larval Extracellular Vesicle protein 1 (SmLEV1)). Comparative sequence analysis demonstrates that lev1 orthologs are found in all published Schistosoma genomes, yet homologs are not found outside of the Schistosomatidae. Lifecycle expression analyses collectively reveal that smlev1 transcription peaks in cercariae, is male biased in adults, and is processed by alternative splicing in intra-mammalian lifecycle stages. Immunohistochemistry of cercariae using a polyclonal anti-recombinant SmLEV1 antiserum localises this protein to the pre-acetabular gland, with some disperse localisation to the surface of the parasite. S. mansoni-infected Ugandan fishermen exhibit a strong IgG1 response against SmLEV1 (dropping significantly after praziquantel treatment), with 11% of the cohort exhibiting an IgE response and minimal levels of detectable antigen-specific IgG4. Furthermore, mice vaccinated with rSmLEV1 show a slightly reduced parasite burden upon challenge infection and significantly reduced granuloma volumes, compared with control animals. Collectively, these results describe SmLEV1 as a Schistosomatidae-specific, EV-enriched immunogen. Further investigations are now necessary to uncover the full extent of SmLEV1's role in shaping schistosome EV function and definitive host relationships.


Asunto(s)
Cercarias/inmunología , Vesículas Extracelulares/inmunología , Proteínas del Helminto/inmunología , Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/parasitología , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Antihelmínticos/administración & dosificación , Anticuerpos Antihelmínticos/inmunología , Cercarias/genética , Cercarias/crecimiento & desarrollo , Niño , Estudios de Cohortes , Vesículas Extracelulares/genética , Femenino , Proteínas del Helminto/administración & dosificación , Proteínas del Helminto/química , Proteínas del Helminto/genética , Humanos , Inmunogenicidad Vacunal , Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Masculino , Ratones , Persona de Mediana Edad , Praziquantel/administración & dosificación , Schistosoma mansoni/química , Schistosoma mansoni/genética , Schistosoma mansoni/crecimiento & desarrollo , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/inmunología , Alineación de Secuencia , Vacunas/administración & dosificación , Vacunas/genética , Vacunas/inmunología , Adulto Joven
5.
J Immunol ; 205(10): 2840-2849, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-33008950

RESUMEN

Polyunsaturated fatty acids (PUFAs) and their metabolites are potent regulators of inflammation. Generally, omega (n)-3 PUFAs are considered proresolving whereas n-6 PUFAs are classified as proinflammatory. In this study, we characterized the inflammatory response in murine peritonitis and unexpectedly found the accumulation of adrenic acid (AdA), a poorly studied n-6 PUFA. Functional studies revealed that AdA potently inhibited the formation of the chemoattractant leukotriene B4 (LTB4), specifically in human neutrophils, and this correlated with a reduction of its precursor arachidonic acid (AA) in free form. AdA exposure in human monocyte-derived macrophages enhanced efferocytosis of apoptotic human neutrophils. In vivo, AdA treatment significantly alleviated arthritis in an LTB4-dependent murine arthritis model. Our findings are, to our knowledge, the first to indicate that the n-6 fatty acid AdA effectively blocks production of LTB4 by neutrophils and could play a role in resolution of inflammation in vivo.


Asunto(s)
Antiinflamatorios/metabolismo , Artritis Experimental/inmunología , Ácidos Grasos Omega-6/metabolismo , Ácidos Grasos Insaturados/metabolismo , Peritonitis/inmunología , Animales , Antiinflamatorios/análisis , Ácido Araquidónico/metabolismo , Artritis Experimental/patología , Células Cultivadas , Ácidos Grasos Omega-6/análisis , Ácidos Grasos Insaturados/análisis , Humanos , Leucotrieno B4/metabolismo , Lipidómica , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Lavado Peritoneal , Peritonitis/patología , Cultivo Primario de Células , Células THP-1 , Zimosan/administración & dosificación , Zimosan/inmunología
6.
J Extracell Vesicles ; 9(1): 1753420, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32489529

RESUMEN

Helminths like Schistosoma mansoni release excretory/secretory (E/S) products that modulate host immunity to enable infection. Extracellular vesicles (EVs) are among these E/S products, yet molecular mechanisms and functionality of S. mansoni EV interaction with host immune cells is unknown. Here we demonstrate that EVs released by S. mansoni schistosomula are internalised by human monocyte-derived dendritic cells (moDCs). Importantly, we show that this uptake was mainly mediated via DC-SIGN (CD209). Blocking DC-SIGN almost completely abrogated EV uptake, while blocking mannose receptor (MR, CD206) or dendritic cell immunoreceptor (DCIR, CLEC4A) had no effect on EV uptake. Mass spectrometric analysis of EV glycans revealed the presence of surface N-glycans with terminal Galß1-4(Fucα1-3)GlcNAc (LewisX) motifs, and a wide array of fucosylated lipid-linked glycans, including LewisX, a known ligand for DC-SIGN. Stimulation of moDCs with schistosomula EVs led to increased expression of costimulatory molecules CD86 and CD80 and regulatory surface marker PD-L1. Furthermore, schistosomula EVs increased expression of IL-12 and IL-10 by moDCs, which was partly dependent on the interaction with DC-SIGN. These results provide the first evidence that glycosylation of S. mansoni EVs facilitates the interaction with host immune cells and reveals a role for DC-SIGN and EV-associated glycoconjugates in parasite-induced immune modulation.

7.
Front Microbiol ; 9: 2182, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30258429

RESUMEN

Recently, the interest in extracellular vesicles (EVs) released by pathogens like bacteria, fungi, and parasites has rapidly increased. Many of these pathogens actively modulate the immune responses of their host and there is accumulating evidence that pathogen-derived EV contribute to this process. The effects of pathogen-derived EV on the host immune system have been attributed to proteins, lipids, nucleic acids, and glycans contained in, or present on these EV. For example, toxins in bacterial EV can modulate pathogen clearance and antigen presentation, while EV-associated polysaccharides are potential vaccine targets because they induce protective immune responses. Furthermore, parasite EV-associated microRNA may increase parasite survival via host gene repression, and the lipid A moiety of LPS in bacteria-derived EV induces strong pro-inflammatory responses. Research on pathogen EV-associated molecules may pave new avenues to combat infectious diseases by immune intervention. This review provides an overview of the current knowledge of EV-associated molecules released by extracellular pathogens and their effects on the host immune system. The current focus and future hotspots of this rapidly expanding field will be highlighted and discussed.

8.
eNeuro ; 4(3)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28660247

RESUMEN

Drosophila phototransduction is mediated by phospholipase C, leading to activation of transient receptor potential (TRP) and TRP-like (TRPL) channels by mechanisms that are unresolved. A role for InsP3 receptors (IP3Rs) had been excluded because IP3R mutants (itpr) appeared to have normal light responses; however, this was recently challenged by Kohn et al. ("Functional cooperation between the IP3 receptor and phospholipase C secures the high sensitivity to light of Drosophila photoreceptors in vivo," Journal of Neuroscience 35:2530), who reported defects in phototransduction after IP3R-RNAi knockdown. They concluded that InsP3-induced Ca2+ release plays a critical role in facilitating channel activation, and that previous failure to detect IP3R phenotypes resulted from trace Ca2+ in electrodes substituting for InsP3-induced Ca2+ release. In an attempt to confirm this, we performed electroretinograms, whole-cell recordings, and GCaMP6f Ca2+ imaging from both IP3R-RNAi flies and itpr-null mutants. Like Kohn et al., we used GMRGal4 to drive expression of UAS-IP3R-RNAi, but we also used controls expressing GMRGal4 alone. We describe several GMRGal4 phenotypes suggestive of compromised development, including reductions in sensitivity, dark noise, potassium currents, and cell size and capacitance, as well as extreme variations in sensitivity between cells. However, we found no effect of IP3R RNAi or mutation on photoreceptor responses or Ca2+ signals, indicating that the IP3R plays little or no role in Drosophila phototransduction.


Asunto(s)
Proteínas de Drosophila/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Fototransducción/fisiología , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Expresión Génica , Receptores de Inositol 1,4,5-Trifosfato/genética , Potenciales de la Membrana/fisiología , Mutación , Técnicas de Placa-Clamp , Fenotipo , Fosfolipasa C beta/genética , Fosfolipasa C beta/metabolismo , Estimulación Luminosa , Interferencia de ARN , Retina/metabolismo , Retina/patología , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...