Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncogenesis ; 12(1): 42, 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573448

RESUMEN

Lethal prostate cancer (PCa) is characterized by the presence of metastases and development of resistance to therapies. Metastases form in a multi-step process enabled by dynamic cytoskeleton remodeling. An actin cytoskeleton regulating gene, CALD1, encodes a protein caldesmon (CaD). Its isoform, low-molecular-weight CaD (l-CaD), operates in non-muscle cells, supporting the function of filaments involved in force production and mechanosensing. Several factors, including glucocorticoid receptor (GR), have been identified as regulators of l-CaD in different cell types, but the regulation of l-CaD in PCa has not been defined. PCa develops resistance in response to therapeutic inhibition of androgen signaling by multiple strategies. Known strategies include androgen receptor (AR) alterations, modified steroid synthesis, and bypassing AR signaling, for example, by GR upregulation. Here, we report that in vitro downregulation of l-CaD promotes epithelial phenotype and reduces spheroid growth in 3D, which is reflected in vivo in reduced formation of metastases in zebrafish PCa xenografts. In accordance, CALD1 mRNA expression correlates with epithelial-to-mesenchymal transition (EMT) transcripts in PCa patients. We also show that CALD1 is highly co-expressed with GR in multiple PCa data sets, and GR activation upregulates l-CaD in vitro. Moreover, GR upregulation associates with increased l-CaD expression after the development of resistance to antiandrogen therapy in PCa xenograft mouse models. In summary, GR-regulated l-CaD plays a role in forming PCa metastases, being clinically relevant when antiandrogen resistance is attained by the means of bypassing AR signaling by GR upregulation.

2.
Front Oncol ; 13: 1298333, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38162485

RESUMEN

Background: Treatment resistance and relapse are common problems in head and neck squamous cell carcinoma (HNSCC). Except for p16, no clinically accepted prognostic biomarkers are available for HNSCC. New biomarkers predictive of recurrence and survival are crucial for optimal treatment planning and patient outcome. High translocator protein (TSPO) levels have been associated with poor survival in cancer, but the role of TSPO has not been extensively evaluated in HNSCC. Materials and methods: TSPO expression was determined in a large population-based tissue microarray cohort including 611 patients with HNSCC and evaluated for survival in several clinicopathological subgroups. A TCGA HNSCC cohort was used to further analyze the role of TSPO in HNSCC. Results: TSPO expression was downregulated in more aggressive tumors. Low TSPO expression associated with worse 5-year survival and was an independent prognostic factor for disease-specific survival. Subgroup analyses showed that low TSPO expression associated with worse survival particularly in p16-positive oropharyngeal cancer. In silico analyses supported the prognostic role of TSPO. Cellular respiration had the highest significance in pathway analyses for genes expressed positively with TSPO. Conclusion: Decreased TSPO expression associates with poor prognosis in HNSCC. TSPO is a prognostic biomarker in HNSCC to potentially guide treatment stratification especially in p16-positive oropharyngeal cancer.

3.
Cancers (Basel) ; 13(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34503213

RESUMEN

SUMOylation is a dynamic and reversible post-translational modification, characterized more than 20 years ago, that regulates protein function at multiple levels. Key oncoproteins and tumor suppressors are SUMO substrates. In addition to alterations in SUMO pathway activity due to conditions typically present in cancer, such as hypoxia, the SUMO machinery components are deregulated at the genomic level in cancer. The delicate balance between SUMOylation and deSUMOylation is regulated by SENP enzymes possessing SUMO-deconjugation activity. Dysregulation of SUMO machinery components can disrupt the balance of SUMOylation, contributing to the tumorigenesis and drug resistance of various cancers in a context-dependent manner. Many molecular mechanisms relevant to the pathogenesis of specific cancers involve SUMO, highlighting the potential relevance of SUMO machinery components as therapeutic targets. Recent advances in the development of inhibitors targeting SUMOylation and deSUMOylation permit evaluation of the therapeutic potential of targeting the SUMO pathway in cancer. Finally, the first drug inhibiting SUMO pathway, TAK-981, is currently also being evaluated in clinical trials in cancer patients. Intriguingly, the inhibition of SUMOylation may also have the potential to activate the anti-tumor immune response. Here, we comprehensively and systematically review the recent developments in understanding the role of SUMOylation in cancer and specifically focus on elaborating the scientific rationale of targeting the SUMO pathway in different cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...