Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37445746

RESUMEN

Despite cognitive symptoms being very important in schizophrenia, not every schizophrenic patient has a significant cognitive deficit. The molecular mechanisms underlying the different degrees of cognitive functioning in schizophrenic patients are not sufficiently understood. We studied the relation between brain-derived neurotrophic factor (BDNF) and cognitive functioning in two groups of schizophrenic patients with different cognitive statuses. According to the Montreal Cognitive Assessment (MoCA) results, the schizophrenic patients were classified into two subgroups: normal cognition (26 or more) and cognitive deficit (25 or less). We measured their plasma BDNF levels using ELISAs. The statistical analyses were performed using Spearman's Rho and Kruskal-Wallis tests. We found a statistically significant positive correlation between the plasma BDNF levels and MoCA score (p = 0.04) in the subgroup of schizophrenic patients with a cognitive deficit (n = 29). However, this correlation was not observed in the patients with normal cognition (n = 11) and was not observed in the total patient group (n = 40). These results support a significant role for BDNF in the cognitive functioning of schizophrenics with some degree of cognitive deficit, but suggest that BDNF may not be crucial in patients with a normal cognitive status. These findings provide information about the molecular basis underlying cognitive deficits in this illness.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Esquizofrenia , Humanos , Chile , Pruebas Neuropsicológicas , Cognición
4.
Dev Neurobiol ; 76(12): 1360-1373, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27112428

RESUMEN

The development of the cerebral cortex is a dynamic and coordinated process in which cell division, cell death, migration, and differentiation must be highly regulated to acquire the final architecture and functional competence of the mature organ. Notch pathway is an important regulator of differentiation and it is essential to maintain neural stem cell (NSC) pool. Here, we studied the role of epigenetic modulators such as lysine-specific demethylase 1 (LSD1) and its interactor CoREST in the regulation of the Notch pathway activity during the development of the cerebral cortex. We found that CoREST and LSD1 interact in vitro with RBPJ-κ in the repressor complex and these proteins are released upon overexpression of Notch intracellular domain (NICD). We corroborated LSD1 and RBPJ-κ interaction in developing cerebral cortex and also found that LSD1 binds to the hes1 promoter. Knock-down of CoREST and LSD1 by in utero electroporation increases Hes1 expression in vivo and decreases Ngn2. Interestingly, we found a functional interaction between CoREST and LSD1 with Notch pathway. This conclusion is based on the observation that both the defects in neuronal migration and the increase in the number of cells expressing Sox2 and Tbr2 were associated to the knock-down of either CoREST or LSD1 and were reversed by the loss of Notch. These results demonstrate that CoREST and LSD1 downregulate the Notch pathway in the developing cerebral cortex, thus suggesting a role of epigenetic regulation in the fine tuning of cell differentiation. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1360-1373, 2016.


Asunto(s)
Diferenciación Celular/fisiología , Corteza Cerebral/crecimiento & desarrollo , Cromatina/metabolismo , Proteínas Co-Represoras/metabolismo , Epigénesis Genética/genética , Histona Demetilasas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Línea Celular , Movimiento Celular/fisiología , Corteza Cerebral/metabolismo , Humanos , Receptores Notch/metabolismo , Transducción de Señal
5.
J Neurosci ; 35(19): 7552-64, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25972180

RESUMEN

The acquisition of distinct neuronal fates is fundamental for the function of the cerebral cortex. We find that the development of subcerebral projections from layer 5 neurons in the mouse neocortex depends on the high levels of expression of the transcription factor CTIP1; CTIP1 is coexpressed with CTIP2 in neurons that project to subcerebral targets and with SATB2 in those that project to the contralateral cortex. CTIP1 directly represses Tbr1 in layer 5, which appears as a critical step for the acquisition of the subcerebral fate. In contrast, lower levels of CTIP1 in layer 6 are required for TBR1 expression, which directs the corticothalamic fate. CTIP1 does not appear to play a critical role in the acquisition of the callosal projection fate in layer 5. These findings unravel a key step in the acquisition of cell fate for closely related corticofugal neurons and indicate that differential dosages of transcriptions factors are critical to specify different neuronal identities.


Asunto(s)
Proteínas Portadoras/metabolismo , Corteza Cerebral/citología , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Vías Nerviosas/fisiología , Neuronas/fisiología , Proteínas Nucleares/metabolismo , Animales , Animales Recién Nacidos , Proteínas Portadoras/genética , Células Cultivadas , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Proteínas de Dominio Doblecortina , Embrión de Mamíferos , Femenino , Histonas/metabolismo , Humanos , Técnicas In Vitro , Antígeno Ki-67/metabolismo , Masculino , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Neuropéptidos/metabolismo , Proteínas Nucleares/genética , Proteínas Represoras , Proteínas de Dominio T Box/metabolismo
6.
J Assoc Res Otolaryngol ; 14(4): 495-508, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23612739

RESUMEN

The cells in the organ of Corti do not exhibit spontaneous cell regeneration; hair cells that die after damage are not replaced. Supporting cells can be induced to transdifferentiate into hair cells, but that would deplete their numbers, therefore impairing epithelium physiology. The loss of p27Kip1 function induces proliferation in the organ of Corti, which raises the possibility to integrate it to the strategies to achieve regeneration. Nevertheless, it is not known if the extent of this proliferative potential, as well as its maintenance in postnatal stages, is compatible with providing a basis for eventual therapeutic manipulation. This is due in part to the limited success of approaches to deliver tools to modify gene expression in the auditory epithelium. We tested the hypothesis that the organ of Corti can undergo significant proliferation when efficient manipulation of the expression of regulators of the cell cycle is achieved. Lentiviral vectors were used to transduce all cochlear cell types, with efficiencies around 4 % for hair cells, 43 % in the overall supporting cell population, and 74 % within lesser epithelial ridge (LER) cells. Expression of short hairpin RNA targeting p27Kip1 encoded by the lentiviral vectors led to measurable proliferation in the organ of Corti and increase in LER cells number but not hair cell regeneration. Our results revalidate the use of lentiviral vectors in the study and in the potential therapeutic approaches for inner ear diseases, as well as demonstrate that efficient manipulation of p27Kip1 is sufficient to induce significant proliferation in the postnatal cochlea.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/deficiencia , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Regulación de la Expresión Génica/efectos de los fármacos , Lentivirus/genética , Órgano Espiral/citología , ARN Interferente Pequeño/farmacología , Animales , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Regulación de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Vectores Genéticos/genética , Modelos Animales , Órgano Espiral/fisiología , Ratas , Ratas Sprague-Dawley , Regeneración , Transducción Genética/métodos
7.
Mol Cell Neurosci ; 51(1-2): 1-11, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22828129

RESUMEN

The formation of the nervous systems requires processes that coordinate proliferation, differentiation and migration of neuronal cells, which extend axons, generate dendritic branching and establish synaptic connections during development. The structural organization and dynamic remodeling of the cytoskeleton and its association to the secretory pathway are critical determinants of cell morphogenesis and migration. Marlin-1 (Jakmip1) is a microtubule-associated protein predominantly expressed in neurons and lymphoid cells. Marlin-1 participates in polarized secretion in lymphocytes, but its functional association with the neuronal cytoskeleton and its contribution to brain development have not been explored. Combining in vitro and in vivo approaches we show that Marlin-1 contributes to the establishment of neuronal morphology. Marlin-1 associates to the cytoskeleton in neurites, is required for the maintenance of an intact Golgi apparatus and its depletion produces the down-regulation of kinesin-1, a plus-end directed molecular motor with a central function in morphogenesis and migration. RNA interference of Marlin-1 in vivo results in abnormal migration of newborn pyramidal neurons during the formation of the cortex. Our results support the involvement of Marlin-1 in the acquisition of the complex architecture and migration of pyramidal neurons, two fundamental processes for the laminar layering of the cortex.


Asunto(s)
Movimiento Celular , Neurogénesis , Células Piramidales/embriología , Proteínas de Unión al ARN/fisiología , Animales , Movimiento Celular/genética , Citoesqueleto/metabolismo , Femenino , Aparato de Golgi/metabolismo , Cinesinas/metabolismo , Ratones , Ratones Endogámicos BALB C , Neurogénesis/genética , Células Piramidales/metabolismo , Interferencia de ARN , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Ratas , Ratas Sprague-Dawley
8.
Cereb Cortex ; 22(6): 1431-41, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21878487

RESUMEN

The development of a neuron from a precursor cell comprises a complex set of steps ranging from regulation of the proliferative cycle through the acquisition of distinct morphology and functionality. How these processes are orchestrated is largely unknown. Using in utero manipulation of gene expression in the mouse embryonic cerebral cortex, we found that the transition between multipolar and bipolar stages of newborn cortical pyramidal neurons is markedly delayed by depletion of CoREST, a corepressor component of chromatin remodeling complexes. This profoundly affects the onset of their radial migration. The loss of CoREST function also perturbs the dynamics of neuronal precursor cell populations, transiently increasing the fraction of cells remaining in progenitor states, but not the acquisition of the neuronal glutamatergic fate of pyramidal cells. The function of CoREST in these processes appears to be independent of its best-known interactor, the RE-1 silencer of transcription/neural restrictive silencing factor, and requires the histone demethylase LSD1. This reveals the importance of epigenetic control in the execution of neural development programs, specifically in the cerebral cortex.


Asunto(s)
Corteza Cerebral/embriología , Proteínas del Tejido Nervioso/fisiología , Neurogénesis/fisiología , Oxidorreductasas N-Desmetilantes/fisiología , Células Piramidales/embriología , Proteínas Represoras/fisiología , Animales , Movimiento Celular/fisiología , Corteza Cerebral/citología , Proteínas Co-Represoras , Epigénesis Genética/fisiología , Femenino , Histona Demetilasas , Proteínas de la Membrana/fisiología , Ratones , Neuronas/fisiología , Embarazo
9.
Zygote ; 17(2): 131-5, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19222870

RESUMEN

Increases in cytosolic calcium concentrations regulate many cellular processes, including aspects of early development. Calcium release from intracellular stores and calcium entry through non-voltage-gated channels account for signalling in non-excitable cells, whereas voltage-gated calcium channels (CaV) are important in excitable cells. We report the expression of multiple transcripts of CaV, identified by its homology to other species, in the early embryo of the zebrafish, Danio rerio, at stages prior to the differentiation of excitable cells. CaV mRNAs and proteins were detected as early as the 2-cell stages, which indicate that they arise from both maternal and zygotic transcription. Exposure of embryos to pharmacological blockers of CaV does not perturb early development significantly, although late effects are appreciable. These results suggest that CaV may have a role in calcium homeostasis and control of cellular process during early embryonic development.


Asunto(s)
Canales de Calcio/biosíntesis , Desarrollo Embrionario/fisiología , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/embriología , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/efectos de los fármacos , Canales de Calcio/genética , Dihidropiridinas/farmacología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Proteínas de Pez Cebra/genética
10.
Mol Cell ; 31(2): 222-31, 2008 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-18657505

RESUMEN

The stress response in cells involves a rapid and transient transcriptional activation of stress genes. It has been shown that Hsp70 limits its own transcriptional activation functioning as a corepressor of heat shock factor 1 (HSF1) during the attenuation of the stress response. Here we show that the transcriptional corepressor CoREST interacts with Hsp70. Through this interaction, CoREST represses both HSF1-dependent and heat shock-dependent transcriptional activation of the hsp70 promoter. In cells expressing short hairpin RNAs directed against CoREST, Hsp70 cannot repress HSF1-dependent transcription. A reduction of CoREST levels also provoked a significant increase of Hsp70 protein levels and an increase of HSF1-dependent transactivation of hsp70 promoter. Via chromatin immunoprecipitation assays we show that CoREST is bound to the hsp70 gene promoter under basal conditions and that its binding increases during heat shock response. In conclusion, we demonstrated that CoREST is a key regulator of the heat shock stress response.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Respuesta al Choque Térmico , Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Línea Celular , Proteínas Co-Represoras , Proteínas de Unión al ADN/química , Silenciador del Gen , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico , Humanos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Regiones Promotoras Genéticas/genética , Unión Proteica , Estructura Terciaria de Proteína , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/química , Activación Transcripcional/genética
11.
J Neurosci ; 28(1): 304-14, 2008 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-18171947

RESUMEN

The synaptic membrane-associated guanylate kinase (MAGUK) scaffolding protein family is thought to play key roles in synapse assembly and synaptic plasticity. Evidence supporting these roles in vivo is scarce, as a consequence of gene redundancy in mammals. The genome of Drosophila contains only one MAGUK gene, discs large (dlg), from which two major proteins originate: DLGA [PSD95 (postsynaptic density 95)-like] and DLGS97 [SAP97 (synapse-associated protein)-like]. These differ only by the inclusion in DLGS97 of an L27 domain, important for the formation of supramolecular assemblies. Known dlg mutations affect both forms and are lethal at larval stages attributable to tumoral overgrowth of epithelia. We generated independent null mutations for each, dlgA and dlgS97. These allowed unveiling of a shift in expression during the development of the nervous system: predominant expression of DLGA in the embryo, balanced expression of both during larval stages, and almost exclusive DLGS97 expression in the adult brain. Loss of embryonic DLGS97 does not alter the development of the nervous system. At larval stages, DLGA and DLGS97 fulfill both unique and partially redundant functions in the neuromuscular junction. Contrary to dlg and dlgA mutants, dlgS97 mutants are viable to adulthood, but they exhibit marked alterations in complex behaviors such as phototaxis, circadian activity, and courtship, whereas simpler behaviors like locomotion and odor and light perception are spared. We propose that the increased repertoire of associations of a synaptic scaffold protein given by an additional domain of protein-protein interaction underlies its ability to integrate molecular networks required for complex functions in adult synapses.


Asunto(s)
Conducta Animal/fisiología , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Unión Neuromuscular/fisiología , Isoformas de Proteínas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Animales Modificados Genéticamente , Ritmo Circadiano/fisiología , Drosophila , Proteínas de Drosophila/genética , Embrión no Mamífero , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Potenciales de la Membrana/fisiología , Microscopía Electrónica de Transmisión/métodos , Actividad Motora , Mutación/fisiología , Unión Neuromuscular/ultraestructura , Isoformas de Proteínas/genética , Conducta Sexual Animal/fisiología , Proteínas Supresoras de Tumor/genética
12.
Biol Res ; 39(3): 483-91, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17106580

RESUMEN

The electrophysiological properties of neurons are determined by the expression of defined complements of ion channels. Nonetheless, the regulation mechanisms of the expression of neuronal ion channels are poorly understood, due in part to the diversity of neuron subtypes. We explored the expression of voltage-gated currents of Xenopus primary spinal neurons unequivocally identified by means of single-cell RT-PCR. We found that identified spinal neurons exhibit heterogeneity in the temporal appearance of voltage-gated currents. Nevertheless, all neurons progress to similar functional phenotypes. A physiological feature is the onset and increase of the expression of sodium currents. To understand the mechanisms underlying this process, we studied the effect of a dominant negative form of the transcriptional silencer REST/NRSF and found that it associates to an increase in the density of sodium currents. This observation is compatible with a role of this factor in the regulation of gene expression in neurons. These experiments constitute a proof of principle for the feasibility of analyzing molecular mechanisms of the regulation of ion channel genes during early neuronal development and provide direct evidence of the role of REST/NRSF in the control of neuronal sodium channel expression.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Neuronas/fisiología , Proteínas Represoras/genética , Canales de Sodio/genética , Médula Espinal/citología , Factores de Transcripción/genética , Animales , Diferenciación Celular , Electrofisiología , Embrión no Mamífero , Neuronas/citología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Médula Espinal/embriología , Xenopus
13.
J Neurosci ; 26(10): 2820-9, 2006 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-16525062

RESUMEN

RE-1 silencer of transcription/neural restrictive silencer factor (REST/NRSF), a transcriptional repressor, binds to the RE-1 element present in many vertebrate genes. In vitro studies indicate that REST/NRSF plays important roles in several stages of neural development. However, a full understanding of its physiological function requires in vivo approaches. We find that impairment of REST/NRSF function in Xenopus embryos leads to the perturbation of neural tube, cranial ganglia, and eye development. The origin of these defects is the abnormal patterning of the ectoderm during gastrulation. Interference of REST/NRSF function during the late blastula stage leads to an expansion of the neural plate, concomitant with a decrease of the expression of epidermal keratin and neural crest markers. Furthermore, neurogenesis proceeds abnormally, with loss of the expression of proneural, neurogenic, and neuronal genes. The interference of REST/NRSF mimics several features associated with a decreased bone morphogenetic protein (BMP) function and counteracts some effects of BMP4 misexpression. Our results indicate that REST/NRSF function is required in vivo for the acquisition of specific ectodermal cell fates.


Asunto(s)
Tipificación del Cuerpo/fisiología , Ectodermo/metabolismo , Neuronas/fisiología , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología , Animales , Tipificación del Cuerpo/efectos de los fármacos , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Microinyecciones/métodos , Biología Molecular/métodos , Morfogénesis , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos , Xenopus
14.
Biol. Res ; 39(3): 483-491, 2006. graf, tab
Artículo en Inglés | LILACS | ID: lil-437381

RESUMEN

The electrophysiological properties of neurons are determined by the expression of defined complements of ion channels. Nonetheless, the regulation mechanisms of the expression of neuronal ion channels are poorly understood, due in part to the diversity of neuron subtypes. We explored the expression of voltage-gated currents of Xenopus primary spinal neurons unequivocally identified by means of single-cell RT-PCR. We found that identified spinal neurons exhibit heterogeneity in the temporal appearance of voltage-gated currents. Nevertheless, all neurons progress to similar functional phenotypes. A physiological feature is the onset and increase of the expression of sodium currents. To understand the mechanisms underlying this process, we studied the effect of a dominant negative form of the transcriptional silencer REST/NRSF and found that it associates to an increase in the density of sodium currents. This observation is compatible with a role of this factor in the regulation of gene expression in neurons. These experiments constitute a proof of principle for the feasibility of analyzing molecular mechanisms of the regulation of ion channel genes during early neuronal development and provide direct evidence of the role of REST/NRSF in the control of neuronal sodium channel expression.


Asunto(s)
Animales , Regulación del Desarrollo de la Expresión Génica/genética , Neuronas/fisiología , Proteínas Represoras/genética , Canales de Sodio/genética , Médula Espinal/citología , Factores de Transcripción/genética , Diferenciación Celular , Electrofisiología , Embrión no Mamífero , Neuronas/citología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Médula Espinal/embriología , Xenopus
15.
J Neurophysiol ; 90(5): 3352-60, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12867527

RESUMEN

Calcium-activated potassium channels regulate excitability of the adult nervous system. In contrast, little is known about the contribution of calcium-activated potassium channels to excitability of the embryonic nervous system when electrical membrane properties and intracellular calcium levels show dramatic changes. Embryonic Xenopus spinal neurons exhibit a well-characterized developmental program of excitability that involves several different currents including calcium-activated ones. Here, we show that a molecular determinant of calcium-activated potassium channels, xSlo, is expressed during Xenopus embryogenesis even prior to differentiation of excitable tissues. Five different xSlo variants are expressed in embryonic tissues as a consequence of alternative exon usage at a single splice site. One of these variants, xSlo59, is neural-specific, and its expression is limited to late stages of neuronal differentiation. However, expression of the four other variants occurs in both muscle and neurons at all stages of development examined. Electrophysiological analysis of recombinant xSlo channels reveals that the xSlo59 exon serves as a gain-of-function module and allows physiologically relevant levels of membrane potential and intracellular calcium to activate effectively the resultant channel. These results suggest that xSlo59 channels play a unique role in sculpting the excitable membrane properties of Xenopus spinal neurons.


Asunto(s)
Empalme Alternativo , Regulación del Desarrollo de la Expresión Génica , Variación Genética , Canales de Potasio Calcio-Activados/genética , Canales de Potasio Calcio-Activados/metabolismo , Xenopus laevis/embriología , Potenciales de Acción/genética , Secuencia de Aminoácidos , Animales , Técnicas de Cultivo , ADN Complementario/aislamiento & purificación , Canales de Potasio de Gran Conductancia Activados por el Calcio , Datos de Secuencia Molecular , Xenopus laevis/genética
16.
J Neurosci ; 23(6): 2093-101, 2003 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-12657668

RESUMEN

Drosophila discs-large (dlg) mutants exhibit multiple developmental abnormalities, including severe defects in neuronal differentiation and synaptic structure and function. These defects have been ascribed to the loss of a single gene product, Dlg-A, a scaffold protein thought to be expressed in many cell types. Here, we describe that additional isoforms arise as a consequence of different transcription start points and alternative splicing of dlg. At least five different dlg gene products are predicted. We identified a subset of dlg-derived cDNAs that include novel exons encoding a peptide homologous to the N terminus of the mammalian protein SAP97/hDLG (S97N). Dlg isoforms containing the S97N domain are expressed at larval neuromuscular junctions and within the CNS of both embryos and larvae but are not detectable in epithelial tissues. Strong hypomorphic dlg alleles exhibit decreased expression of S97N, which may account for neural-specific aspects of the pleiomorphic dlg mutant phenotype. Selective inhibition of the expression of S97N-containing proteins in embryos by double-strand RNA leads to severe defects in neuronal differentiation and axon guidance, without overt perturbations in epithelia. These results indicate that the differential expression of dlg products correlates with distinct functions in non-neural and neural cells. During embryonic development, proteins that include the S97N domain are essential for proper neuronal differentiation and organization, acting through mechanisms that may include the adequate localization of cell fate determinants.


Asunto(s)
Proteínas de Drosophila , Proteínas de Insectos/fisiología , Neuronas/metabolismo , Proteínas Supresoras de Tumor/fisiología , Empalme Alternativo , Animales , Diferenciación Celular/fisiología , Sistema Nervioso Central/embriología , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/fisiología , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Drosophila , Embrión no Mamífero/inervación , Exones/fisiología , Etiquetas de Secuencia Expresada , Regulación del Desarrollo de la Expresión Génica/fisiología , Inmunohistoquímica , Proteínas de Insectos/genética , Larva , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/ultraestructura , Neuronas/citología , Neurópilo/citología , Neurópilo/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Estructura Terciaria de Proteína/fisiología , ARN Bicatenario/farmacología , Proteínas Supresoras de Tumor/genética
17.
J Neurosci ; 22(19): 8347-51, 2002 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-12351707

RESUMEN

The ability of neurons to fire rapid action potential relies on the expression of voltage-gated sodium channels; the onset of the transcription of genes that encode these channels occurs during early neuronal development. The factors that direct and regulate the specific expression of ion channels are not well understood. Repressor element-1 silencing transcription/neuron-restrictive silencer factor (REST/NRSF) is a transcriptional regulator characterized as a repressor of the expression of NaV1.2, the gene encoding the voltage-gated sodium channel most abundantly expressed in the CNS, as well as of the expression of numerous other neuronal genes. In mammals, REST/NRSF is expressed mostly in non-neural cell types and immature neurons, and it is downregulated on neural maturation. To understand the mechanisms that govern sodium channel gene transcription and to explore the role of REST/NRSF in vivo, we inhibited REST/NRSF action in developing Xenopus laevis embryos by means of a dominant negative protein or antisense oligonucleotides. Contrary to what was expected, these maneuvers result in the decrease of the expression of the NaV1.2 gene, as well as of other neuronal genes in the primary spinal neurons and cranial ganglia, without overt perturbation of neurogenesis. These results, together with the demonstration of robust REST/NRSF expression in primary spinal neurons, suggest that REST/NRSF is required for the acquisition of the differentiated functional neuronal phenotype during early development. Furthermore, they suggest that REST/NRSF may be used to activate or repress transcription of neuronal genes in distinct cellular and developmental contexts.


Asunto(s)
Neuronas/metabolismo , Proteínas Represoras/metabolismo , Canales de Sodio/biosíntesis , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Ensayo de Cambio de Movilidad Electroforética , Embrión no Mamífero , Silenciador del Gen/fisiología , Genes Dominantes , Hibridación in Situ , Canal de Sodio Activado por Voltaje NAV1.2 , Proteínas del Tejido Nervioso/metabolismo , Cresta Neural/citología , Cresta Neural/embriología , Cresta Neural/metabolismo , Neuronas/citología , Oligonucleótidos Antisentido/farmacología , Fenotipo , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Canales de Sodio/metabolismo , Médula Espinal/citología , Médula Espinal/embriología , Médula Espinal/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...