Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36676559

RESUMEN

The article presents a theoretical study of the regimes of high-pressure torsion (HPT) for which slippage of the deforming material on the interfaces with anvils is possible. The approach taken is a generalisation of the currently accepted view of the HPT process. It enables a rational explanation of its salient features and the effects observed experimentally. These include a lag in the rotation angle of the specimen behind that of the anvils, an outflow of the material from the deformation zone, enhancement in gripping the specimen with anvils with increasing axial pressure, etc. A generalised condition for gripping the specimen with anvils, providing a basis for an analytical investigation of the HPT deformation at a qualitative level, is established. The results of the analytical modelling are supported by finite-element calculations. It is shown that for friction stress below the shear stress of the specimen material (i.e., for the friction factor m < 1), plastic deformation is furnished by non-shear flows, which expands the range of possible process regimes. The potential of these flow modes is impressive, which is reflected in the second meaning of the word "gripping" in the title of the article. Non-shear flows manifest themselves in the spreading of the material over the anvil surfaces whose cessation signifies the end of deformation and the beginning of slippage of the specimen as a whole. The model shows that for m < 1 such a finale is inevitable at any axial pressure. It predicts, however, that the highest achievable strain is increased when the axial pressure is raised in the course of the HPT process. Unlimited deformation of the specimen is only possible for m = 1, when slippage of the deforming material relative to the anvils is suppressed.

2.
Materials (Basel) ; 15(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35057318

RESUMEN

During severe plastic deformation (SPD), the processes of lattice defect formation as well as their relaxation (annihilation) compete with each other. As a result, a dynamic equilibrium is established, and a steady state is reached after a certain strain value. Simultaneously, other kinetic processes act in opposite directions and also compete with each other during SPD, such as grain refinement/growth, mechanical strengthening/softening, formation/decomposition of solid solution, etc. These competing processes also lead to dynamic equilibrium and result in a steady state (saturation), albeit after different strains. Among these steady-state phenomena, particle fragmentation during the second phase of SPD has received little attention. Available data indicate that precipitate fragmentation slows down with increasing strain, though saturation is achieved at higher strains than in the case of hardness or grain size. Moreover, one can consider the SPD-driven nanocrystallization in the amorphous phase as a process that is opposite to the fragmentation of precipitates. The size of these crystalline nanoprecipitates also saturates after a certain strain. The fragmentation of precipitates during SPD is the topic of this review.

3.
Adv Mater ; 33(3): e2005473, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33300235

RESUMEN

Structural patterns found in living organisms have long been inspiring biomimetic materials design. Here, it is suggested that a rich palette of patterns occurring in inanimate Nature, and especially in the Earth's lithosphere, could be not less inspirational for design of novel architectured materials. This materials design paradigm is referred to as lithomimetics and it is demonstrated that some of the patterns found in the lithosphere can be emulated by established processes of severe plastic deformation. This opens up interesting avenues for materials design in which potentially promising structural patterns are borrowed from the lithosphere's repository. The key aim here is to promulgate the "lithomimetics" paradigm as a promising approach to developing novel architectured materials.

4.
Materials (Basel) ; 11(7)2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-30012979

RESUMEN

A new severe plastic deformation process, plastic flow machining (PFM), was introduced recently to produce sheet materials with ultrafine and gradient structures from bulk samples in one single deformation step. During the PFM process, a part of a rectangular sample is transformed into a thin sheet or fin under high hydrostatic pressure. The obtained fin is heavily deformed and presents a strain gradient across its thickness. The present paper aims to provide better understanding about this new process via analytical modelling accompanied by finite element simulations. PFM experiments were carried out on square commercially pure aluminum (CP Al) billets. Under pressing, the material flowed from the horizontal channel into a narrow 90° oriented lateral channel to form a fin sheet product, and the remaining part of the sample continued to move along the horizontal channel. At the opposite end of the bulk sample, a back-pressure was applied to increase the hydrostatic pressure in the material. The experiments were set at different width sizes of the lateral channel under two conditions; with or without applying back-pressure. A factor called the lateral extrusion ratio was defined as the ratio between the volume of the produced fin and the incoming volume. This ratio characterizes the efficiency of the PFM process. The experimental results showed that this ratio was greater when back-pressure was applied and further, it increased with the rise of the lateral channel width size. Finite element simulations were conducted in the same boundary conditions as the experiments using DEFORM-2D/3D software, V11.0. Two analytical models were also established. The first one used the variational principle to predict the lateral extrusion ratio belonging to the minimum total plastic power. The second one employed an upper-bound approach on a kinematically admissible velocity field to describe the deformation gradient in the fin. The numerical simulations and the analytical modelling successfully predicted the experimental tendencies, including the deformation gradient across the fin thickness.

5.
Beilstein J Nanotechnol ; 7: 1267-1277, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27826500

RESUMEN

By analyzing the problem of high pressure torsion (HPT) in the rigid plastic formulation, we show that the power hardening law of plastically deformed materials leads to self-similarity of HPT, admitting a simple mathematical description of the process. The analysis shows that the main parameters of HPT are proportional to ß q , with ß being the angle of the anvil rotation. The meaning of the parameter q is: q = 0 for velocity and strain rate, q = 1 for shear strain and von Mises strain, q = n for stress, pressure and torque (n is the exponent of a power hardening law). We conclude that if the hardening law is a power law in a rotation interval ß, self-similar regimes can emerge in HPT if the friction with the lateral wall of the die is not too high. In these intervals a simple mathematical description can be applied based on self-similarity. Outside these ranges, the plasticity problem still has to be solved for each value of ß. The results obtained have important practical implications for the proper design and analysis of HPT experiments.

6.
Pathol Oncol Res ; 3(2): 121-125, 1997.
Artículo en Inglés | MEDLINE | ID: mdl-11173638

RESUMEN

A total of 153 regional lymph nodes obtained from 50 patients, operated for gastric, lung, breast, colonic and cervical cancers, were studied. Immunohistochemical methods were used to detect different markers and enzymes (CD1, CD2, CD3, CD4, CD8, CD20, CD30, CD35, CD45, l light Ig chain, lysozyme (muramidase), a-1-antichymotrypsin, protein S100 and FVIIIR). Results indicate that failure of local immunity is explained by the followings: 1. decrease in the total number of T-cells (suppressors as well as helpers); 2. high number of B-cells, plasmoblasts and antibody-forming plasmocytes, know to be able to block the cytotoxic T cells; 3. decrease in the number of incoming free phagocytes of monocytic origin and reduction in the phagocytic activity of fixed macrophages (sinus histiocytes); 4. high functional activity of dendritic reticulum cells; 5. non-handled stimulation 6. reduction in area of postcapillary venules and impairment of lymphocyte recirculation through them.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA