Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Compr Rev Food Sci Food Saf ; 22(4): 3185-3211, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37254305

RESUMEN

Phenolic compounds can form complexes with starch during food processing, which can modulate the release of phenolic compounds in the gastrointestinal tract and regulate the bioaccessibility of phenolic compounds. The starch-phenolic complexation is determined by the structure of starch, phenolic compounds, and the food processing conditions. In this review, the complexation between starch and phenolic compounds during (hydro)thermal and nonthermal processing is reviewed. A hypothesis on the complexation kinetics is developed to elucidate the mechanism of complexation between starch and phenolic compounds considering the reaction time and the processing conditions. The subsequent effects of complexation on the physicochemical properties of starch, including gelatinization, retrogradation, and digestion, are critically articulated. Further, the release of phenolic substances and the bioaccessibility of different types of starch-phenolics complexes are discussed. The review emphasizes that the processing-induced structural changes of starch are the major determinant modulating the extent and manner of complexation with phenolic compounds. The controlled release of complexes formed between phenolic compounds and starch in the digestive tracts can modify the functionality of starch-based foods and, thus, can be used for both the modulation of glycemic response and the targeted delivery of phenolic compounds.


Asunto(s)
Fenoles , Almidón , Almidón/química , Fenoles/química , Manipulación de Alimentos , Tracto Gastrointestinal
2.
Neural Regen Res ; 18(10): 2134-2140, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37056120

RESUMEN

The scientists are dedicated to studying the detection of Alzheimer's disease onset to find a cure, or at the very least, medication that can slow the progression of the disease. This article explores the effectiveness of longitudinal data analysis, artificial intelligence, and machine learning approaches based on magnetic resonance imaging and positron emission tomography neuroimaging modalities for progression estimation and the detection of Alzheimer's disease onset. The significance of feature extraction in highly complex neuroimaging data, identification of vulnerable brain regions, and the determination of the threshold values for plaques, tangles, and neurodegeneration of these regions will extensively be evaluated. Developing automated methods to improve the aforementioned research areas would enable specialists to determine the progression of the disease and find the link between the biomarkers and more accurate detection of Alzheimer's disease onset.

3.
Transl Neurodegener ; 12(1): 11, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36907887

RESUMEN

Treatment for Alzheimer's disease (AD) can be more effective in the early stages. Although we do not completely understand the aetiology of the early stages of AD, potential pathological factors (amyloid beta [Aß] and tau) and other co-factors have been identified as causes of AD, which may indicate some of the mechanism at work in the early stages of AD. Today, one of the primary techniques used to help delay or prevent AD in the early stages involves alleviating the unwanted effects of oxidative stress on Aß clearance. 4-Hydroxynonenal (HNE), a product of lipid peroxidation caused by oxidative stress, plays a key role in the adduction of the degrading proteases. This HNE employs a mechanism which decreases catalytic activity. This process ultimately impairs Aß clearance. The degradation of HNE-modified proteins helps to alleviate the unwanted effects of oxidative stress. Having a clear understanding of the mechanisms associated with the degradation of the HNE-modified proteins is essential for the development of strategies and for alleviating the unwanted effects of oxidative stress. The strategies which could be employed to decrease the effects of oxidative stress include enhancing antioxidant activity, as well as the use of nanozymes and/or specific inhibitors. One area which shows promise in reducing oxidative stress is protein design. However, more research is needed to improve the effectiveness and accuracy of this technique. This paper discusses the interplay of potential pathological factors and AD. In particular, it focuses on the effect of oxidative stress on the expression of the Aß-degrading proteases through adduction of the degrading proteases caused by HNE. The paper also elucidates other strategies that can be used to alleviate the unwanted effects of oxidative stress on Aß clearance. To improve the effectiveness and accuracy of protein design, we explain the application of quantum mechanical/molecular mechanical approach.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Estrés Oxidativo , Péptido Hidrolasas/metabolismo , Simulación por Computador
4.
Biosystems ; 224: 104826, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36610587

RESUMEN

Biological systems such as mammalian cell cycle are complex systems consisting of a large number of molecular species interacting in ways that produce complex nonlinear systems dynamics. Discrete models such as Boolean models and continuous models such as Ordinary Differential Equations (ODEs) have been widely used to study these systems. Boolean models are simple and can capture qualitative systems behaviour, but they cannot capture the continuous trends of protein concentrations, while ODE models capture continuous trends but require kinetics parameters that are limited. Further, as systems get larger, complexity of these models becomes an issue for parameterization, analysis and interpretation. Also, molecular systems operate under the conditions of uncertainty and noise and our understanding of molecular processes in general is more at a qualitative level characterised by vagueness, imprecision and ambiguity. Hence, as more data are generated, there is a greater need for simpler data driven methods that can approximate continuous system behaviour while representing vagueness and ambiguity without requiring kinetic parameters. Fuzzy inferencing is one such promising method with the ability to work with qualitative vague/imprecise biological knowledge. In this study, we propose a fuzzy inference system for representing continuous behaviour of proteins and apply to some key proteins in the mammalian cell cycle system. The methods we introduced here is novel to protein interaction systems and cell cycle proteins. Our study proposes a three-stage approach to develop fuzzy protein controllers. In stage one, protein system is studied for interactions. We studied some significant core controllers of mammalian cell cycle and their producers and degraders as presented in a published ODE model. Based on the observations from a dataset generated from it, we developed Fuzzy inference systems (FIS) in the second stage, that involved deriving fuzzy IF-THEN rules and their processing, and manually tuned the FIS to predict the dynamics of individual proteins. In stage three, we employed Particle Swarm Optimisation (PSO) for optimising the FIS to further enhance prediction accuracy. Systems dynamics simulation results of the optimised FIS models were in close agreement with the benchmark ODE model results. The results show that the FIS models provide a close approximation to the comprehensive benchmark model in robustly representing continuous protein dynamics while representing the control of protein behavior in an intuitive and transparent format without requiring kinetic parameters. Therefore, FIS models can be an alternative to ODEs in network modelling. Further, FIS models can be assembled to develop large complex systems without losing information or accuracy.


Asunto(s)
Proteínas de Ciclo Celular , Dinámicas no Lineales , Animales , Ciclo Celular , División Celular , Cinética , Lógica Difusa , Algoritmos , Mamíferos
5.
Foods ; 11(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36230148

RESUMEN

Wine research has as its core components the disciplines of sensory analysis, viticulture, and oenology. Wine quality is an important concept for each of these disciplines, as well as for both wine producers and consumers. Any technique that could help producers to understand the nature of wine quality and how consumers perceive it, will help them to design even more effective marketing strategies. However, predicting a wine's quality presents wine science modelling with a real challenge. We used sample data from Pinot noir wines from different regions of New Zealand to develop a mathematical model that can predict wine quality, and applied dimensional analysis with the Buckingham Pi theorem to determine the mathematical relationship among different chemical and physiochemical compounds. This mathematical model used perceived wine quality indices investigated by wine experts and industry professionals. Afterwards, machine learning algorithms are applied to validate the relevant sensory and chemical concepts. Judgments of wine intrinsic attributes, including overall quality, were made by wine professionals to two sets of 18 Pinot noir wines from New Zealand. This study develops a conceptual and mathematical framework to predict wine quality, and then validated these using a large dataset with machine learning approaches. It is worth noting that the predicted wine quality indices are in good agreement with the wine experts' perceived quality ratings.

6.
Molecules ; 27(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36144710

RESUMEN

NMDAR-dependent synaptic plasticity in the hippocampus consists of two opposing forces: long-term potentiation (LTP), which strengthens synapses and long-term depression (LTD), which weakens synapses. LTP and LTD are associated with memory formation and loss, respectively. Synaptic plasticity is controlled at a molecular level by Ca2+-mediated protein signaling. Here, Ca2+ binds the protein, calmodulin (CaM), which modulates synaptic plasticity in both directions. This is because Ca2+-bound CaM activates both LTD-and LTP-inducing proteins. Understanding how CaM responds to Ca2+ signaling and how this translates into synaptic plasticity is therefore important to understanding synaptic plasticity induction. In this paper, CaM activation by Ca2+ and calmodulin binding to downstream proteins was mathematically modeled using differential equations. Simulations were monitored with and without theoretical knockouts and, global sensitivity analyses were performed to determine how Ca2+/CaM signaling occurred at various Ca2+ signals when CaM levels were limiting. At elevated stimulations, the total CaM pool rapidly bound to its protein binding targets which regulate both LTP and LTD. This was followed by CaM becoming redistributed from low-affinity to high-affinity binding targets. Specifically, CaM was redistributed away from LTD-inducing proteins to bind the high-affinity LTP-inducing protein, calmodulin-dependent kinase II (CaMKII). In this way, CaMKII acted as a dominant affecter and repressed activation of opposing CaM-binding protein targets. The model thereby showed a novel form of CaM signaling by which the two opposing pathways crosstalk indirectly. The model also found that CaMKII can repress cAMP production by repressing CaM-regulated proteins, which catalyze cAMP production. The model also found that at low Ca2+ stimulation levels, typical of LTD induction, CaM signaling was unstable and is therefore unlikely to alone be enough to induce synaptic depression. Overall, this paper demonstrates how limiting levels of CaM may be a fundamental aspect of Ca2+ regulated signaling which allows crosstalk among proteins without requiring directly interaction.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Calmodulina , Calcio/metabolismo , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calmodulina/metabolismo , Hipocampo/metabolismo , Plasticidad Neuronal , Fosforilación
7.
Nutrients ; 14(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36145240

RESUMEN

Dietary phenolic compounds must be released from the food matrix in the gastrointestinal tract to play a bioactive role, the release of which is interfered with by food structure. The release of phenolics (unbound and bound) of cold and hot extruded noodles enriched with phenolics (2.0%) during simulated in vitro gastrointestinal digestion was investigated. Bound phenolic content and X-ray diffraction (XRD) analysis were utilized to characterize the intensity and manner of starch-phenolic complexation during the preparation of extruded noodles. Hot extrusion induced the formation of more complexes, especially the V-type inclusion complexes, with a higher proportion of bound phenolics than cold extrusion, contributing to a more controlled release of phenolics along with slower starch digestion. For instance, during simulated small intestinal digestion, less unbound phenolics (59.4%) were released from hot extruded phenolic-enhanced noodles than from the corresponding cold extruded noodles (68.2%). This is similar to the release behavior of bound phenolics, that cold extruded noodles released more bound phenolics (56.5%) than hot extruded noodles (41.9%). For noodles extruded with rutin, the release of unbound rutin from hot extruded noodles and cold extruded noodles was 63.6% and 79.0%, respectively, in the small intestine phase, and bound rutin was released at a much lower amount from the hot extruded noodles (55.8%) than from the cold extruded noodles (89.7%). Hot extrusion may allow more potential bioaccessible phenolics (such as rutin), further improving the development of starchy foods enriched with controlled phenolics.


Asunto(s)
Digestión , Almidón , Preparaciones de Acción Retardada , Suplementos Dietéticos/análisis , Fenoles/farmacología , Extractos Vegetales/farmacología , Rutina , Almidón/metabolismo
8.
Environ Toxicol Pharmacol ; 92: 103850, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35301132

RESUMEN

The chronic kidney disease of unknown etiology (CKDu) is a global health concern primarily impacting tropical farming communities. Although the precise etiology is debated, CKDu is associated with environmental exposures including heat stress and chemical contaminants such as fluoride, heavy metals, and herbicide glyphosate. However, a comprehensive synthesis is lacking on molecular networks underpinning renal damage induced by these factors. Addressing this gap, here we present key molecular events associated with heat and chemical exposures. We identified that caspase activation and lipid peroxidation are common endpoints of glyphosate exposure, while vasopressin and polyol pathways are associated with heat stress and dehydration. Heavy metal exposure is shown to induce lipid peroxidation and endoplasmic reticulum stress from ROS activated MAPK, NFĸB, and caspase. Collectively, we identify that environmental exposure induced increased cellular oxidative stress as a common mechanism mediating renal cell inflammation, apoptosis, and necrosis, likely contributing to CKDu initiation and progression.


Asunto(s)
Exposición a Riesgos Ambientales , Metales Pesados , Insuficiencia Renal Crónica , Agricultura , Caspasas , Exposición a Riesgos Ambientales/efectos adversos , Glicina/análogos & derivados , Glicina/toxicidad , Respuesta al Choque Térmico , Humanos , Riñón , Peroxidación de Lípido , Metales Pesados/toxicidad , Insuficiencia Renal Crónica/inducido químicamente , Población Rural , Clima Tropical , Vasopresinas , Glifosato
9.
Biosystems ; 203: 104374, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33556446

RESUMEN

Model reduction is an important topic in studies of biological systems. By reducing the complexity of large models through multi-level models while keeping the essence (biological meaning) of the model, model reduction can help answer many important questions about these systems. In this paper, we present a new reduction method based on hierarchical representation and a lumping approach. We used G1/S checkpoint pathway represented in Ordinary Differential Equations (ODE) in Iwamoto et al. (2011) as a case study to present this reduction method. The approach consists of two parts; the first part represents the biological network as a hierarchy (multiple levels) based on protein binding relations, which allowed us to model the biological network at different levels of abstraction. The second part applies different levels (level 1, 2 and 3) of lumping the species together depending on the level of the hierarchy, resulting in a reduced and transformed model for each level. The model at each level is a representation of the whole system and can address questions pertinent to that level. We develop and simulate reduced models for levels-1, 2 and 3 of lumping for the G1/S checkpoint pathway and evaluate the biological plausibility of the proposed method by comparing the results with the original ODE model of Iwamoto et al. (2011). The results for continuous dynamics of the G1/S checkpoint pathway with or without DNA-damage for reduced models of level- 1, 2 and 3 of lumping are in very good agreement and consistent with the original model results and with biological findings. Therefore, the reduced models (level-1, 2 and 3) can be used to study cell cycle progression in G1 and the effects of DNA damage on it. It is suitable for reducing complex ODE biological network models while retaining accurate continuous dynamics of the system. The 3 levels of the reduced models respectively achieved 20%, 26% and 31% reduction of the base model. Moreover, the reduced model is more efficient to run (30%, 44% and 52% time reduction for the three levels) and generate solutions than the original ODE model. Simplification of complex mathematical models is possible and the proposed reduction method has the potential to make an impact across many fields of biomedical research.


Asunto(s)
Daño del ADN , Puntos de Control de la Fase G1 del Ciclo Celular , Animales , Ciclo Celular , Mamíferos , Modelos Biológicos , Modelos Teóricos , Transducción de Señal , Biología de Sistemas
10.
Neural Regen Res ; 16(6): 1150-1157, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33269764

RESUMEN

Protein phosphorylation and dephosphorylation are two essential and vital cellular mechanisms that regulate many receptors and enzymes through kinases and phosphatases. Ca2+- dependent kinases and phosphatases are responsible for controlling neuronal processing; balance is achieved through opposition. During molecular mechanisms of learning and memory, kinases generally modulate positively while phosphatases modulate negatively. This review outlines some of the critical physiological and structural aspects of kinases and phosphatases involved in maintaining postsynaptic structural plasticity. It also explores the link between neuronal disorders and the deregulation of phosphatases and kinases.

11.
Neural Regen Res ; 16(4): 700-706, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33063731

RESUMEN

The axon initial segment (AIS) region is crucial for action potential initiation due to the presence of high-density AIS protein voltage-gated sodium channels (Nav). Nav channels comprise several serine residues responsible for the recruitment of Nav channels into the structure of AIS through interactions with ankyrin-G (AnkG). In this study, a series of computational experiments are performed to understand the role of AIS proteins casein kinase 2 and AnkG on Nav channel recruitment into the AIS. The computational simulation results using Virtual cell software indicate that Nav channels with all serine sites available for phosphorylation bind to AnkG with strong affinity. At the low initial concentration of AnkG and casein kinase 2, the concentration of Nav channels reduces significantly, suggesting the importance of casein kinase 2 and AnkG in the recruitment of Nav channels.

12.
BMC Bioinformatics ; 21(1): 515, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33176690

RESUMEN

BACKGROUND: Numerical solutions of the chemical master equation (CME) are important for understanding the stochasticity of biochemical systems. However, solving CMEs is a formidable task. This task is complicated due to the nonlinear nature of the reactions and the size of the networks which result in different realizations. Most importantly, the exponential growth of the size of the state-space, with respect to the number of different species in the system makes this a challenging assignment. When the biochemical system has a large number of variables, the CME solution becomes intractable. We introduce the intelligent state projection (ISP) method to use in the stochastic analysis of these systems. For any biochemical reaction network, it is important to capture more than one moment: this allows one to describe the system's dynamic behaviour. ISP is based on a state-space search and the data structure standards of artificial intelligence (AI). It can be used to explore and update the states of a biochemical system. To support the expansion in ISP, we also develop a Bayesian likelihood node projection (BLNP) function to predict the likelihood of the states. RESULTS: To demonstrate the acceptability and effectiveness of our method, we apply the ISP method to several biological models discussed in prior literature. The results of our computational experiments reveal that the ISP method is effective both in terms of the speed and accuracy of the expansion, and the accuracy of the solution. This method also provides a better understanding of the state-space of the system in terms of blueprint patterns. CONCLUSIONS: The ISP is the de-novo method which addresses both accuracy and performance problems for CME solutions. It systematically expands the projection space based on predefined inputs. This ensures accuracy in the approximation and an exact analytical solution for the time of interest. The ISP was more effective both in predicting the behavior of the state-space of the system and in performance management, which is a vital step towards modeling large biochemical systems.


Asunto(s)
Modelos Biológicos , Teorema de Bayes , Catálisis , Cadenas de Markov , Procesos Estocásticos
13.
Food Chem ; 324: 126837, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32339791

RESUMEN

Evidences have shown that phytosome assemblies are novel drug delivery system. However, studies of phytosomes in food applications are scarce. The characteristics of milk phospholipid assemblies and their functionality in terms of in vitro digestibility and bioavailability of encapsulated nutrients (ascorbic acid and α-tocopherol) were studied. The phytosomes were fabricated using ethanolic evaporation technique. Spectral analysis revealed that polar parts of phospholipids formed hydrogen bonds with ascorbic acid hydroxyl groups, further, incorporating ascorbic acid or α-tocopherol into the phospholipid assembly changed the chemical conformation of the complexes. Phospholipid-ascorbic acid phytosomes yielded an optimal complexing index of 98.52 ± 0.03% at a molar ratio of 1:1. Phytosomes exhibited good biocompatibility on intestinal epithelial cells. The cellular uptake of ascorbic acid was 29.06 ± 1.18% for phytosomes. It was higher than that for liposomes (24.14 ± 0.60%) and for ascorbic acid aqueous solution (1.17 ± 0.70%).


Asunto(s)
Antioxidantes/química , Ácido Ascórbico/química , Liposomas/química , Leche/química , Fosfolípidos/química , alfa-Tocoferol/química , Animales , Ácido Ascórbico/farmacocinética , Rastreo Diferencial de Calorimetría , Línea Celular , Liberación de Fármacos , Células Epiteliales/efectos de los fármacos , Enlace de Hidrógeno , Absorción Intestinal/efectos de los fármacos , Fosfolípidos/farmacocinética , Ratas , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier
14.
J Theor Biol ; 496: 110212, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32142804

RESUMEN

Cell cycle is a large biochemical network and it is crucial to simplify it to gain a clearer understanding and insights into the cell cycle. This is also true for other biochemical networks. In this study, we present a model abstraction scheme/pipeline to create a minimal abstract model of the whole mammalian cell cycle system from a large Ordinary Differential Equation model of cell cycle we published previously (Abroudi et al., 2017). The abstract model is developed in a way that it captures the main characteristics (dynamics of key controllers), responses (G1-S and G2-M transitions and DNA damage) and the signalling subsystems (Growth Factor, G1-S and G2-M checkpoints, and DNA damage) of the original model (benchmark). Further, our model exploits: (i) separation of time scales (slow and fast reactions), (ii) separation of levels of complexity (high-level and low-level interactions), (iii) cell-cycle stages (temporality), (iv) functional subsystems (as mentioned above), and (v) represents the whole cell cycle - within a Multi-Level Hybrid Petri Net (MLHPN) framework. Although hybrid Petri Nets is not new, the abstraction of interactions and timing we introduced here is new to cell cycle and Petri Nets. Importantly, our models builds on the significant elements, representing the core cell cycle system, found through a novel Global Sensitivity Analysis on the benchmark model, using Self Organising Maps and Correlation Analysis that we introduced in (Abroudi et al., 2017). Taken the two aspects together, our study proposes a 2-stage model reduction pipeline for large systems and the main focus of this paper is on stage 2, Petri Net model, put in the context of the pipeline. With the MLHPN model, the benchmark model with 61 continuous variables (ODEs) and 148 parameters were reduced to 14 variables (4 continuous (Cyc_Cdks - the main controllers of cell cycle) and 10 discrete (regulators of Cyc_Cdks)) and 31 parameters. Additional 9 discrete elements represented the temporal progression of cell cycle. Systems dynamics simulation results of the MLHPN model were in close agreement with the benchmark model with respect to the crucial metrics selected for comparison: order and pattern of Cyc_Cdk activation, timing of G1-S and G2-M transitions with or without DNA damage, efficiency of the two cell cycle checkpoints in arresting damaged cells and passing healthy cells, and response to two types of global parameter perturbations. The results show that the MLHPN provides a close approximation to the comprehensive benchmark model in robustly representing systems dynamics and emergent properties while presenting the core cell cycle controller in an intuitive, transparent and subsystems format.


Asunto(s)
Mamíferos , Modelos Biológicos , Animales , Ciclo Celular , Puntos de Control del Ciclo Celular , División Celular , Simulación por Computador , Transducción de Señal
15.
Foods ; 9(3)2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32121655

RESUMEN

Milk phospholipids (MPLs) have been used as ingredients for food fortification, such as bakery products, yogurt, and infant formula, because of their technical and nutritional functionalities. Starting from either buttermilk or beta serum as the original source, this review assessed four typical extraction processes and estimated that the life-cycle carbon footprints (CFs) of MPLs were 87.40, 170.59, 159.07, and 101.05 kg CO2/kg MPLs for membrane separation process, supercritical fluid extraction (SFE) by CO2 and dimethyl ether (DME), SFE by DME, and organic solvent extraction, respectively. Regardless of the MPL content of the final products, membrane separation remains the most efficient way to concentrate MPLs, yielding an 11.1-20.0% dry matter purity. Both SFE and solvent extraction processes are effective at purifying MPLs to relatively higher purity (76.8-88.0% w/w).

16.
Neural Regen Res ; 14(4): 621-631, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30632502

RESUMEN

Synaptotagmin 7 (Syt7), a presynaptic calcium sensor, has a significant role in the facilitation in short-term synaptic plasticity: Syt7 knock out mice show a significant reduction in the facilitation. The functional importance of short-term synaptic plasticity such as facilitation is not well understood. In this study, we attempt to investigate the potential functional relationship between the short-term synaptic plasticity and postsynaptic response by developing a mathematical model that captures the responses of both wild-type and Syt7 knock-out mice. We then studied the model behaviours of wild-type and Syt7 knock-out mice in response to multiple input action potentials. These behaviors could establish functional importance of short-term plasticity in regulating the postsynaptic response and related synaptic properties. In agreement with previous modeling studies, we show that release sites are governed by non-uniform release probabilities of neurotransmitters. The structure of non-uniform release of neurotransmitters makes short-term synaptic plasticity to act as a high-pass filter. We also propose that Syt7 may be a modulator for the long-term changes of postsynaptic response that helps to train the target frequency of the filter. We have developed a mathematical model of short-term plasticity which explains the experimental data.

17.
J Theor Biol ; 462: 134-147, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30439375

RESUMEN

The p53 protein, a tumour suppressor, is a key player in the DNA damage response. The activation of apoptosis by p53 involves the intrinsic apoptotic pathway to eliminate stressed cells that contain DNA lesions. Recent experiments have found that apoptosis happen in an all-or-none switch like manner  (Albeck et al., 2008; Rehm et al., 2002). We focus on modelling the mechanism of p53 activation of apoptosis in response to sustained high DNA double-strand breaks. The aim of the research is to investigate the design principles behind the regulation of p53 activation of apoptotic switch. Building on previous models (Chong et al., 2015; Zhang et al., 2009a), we developed a mathematical model that incorporated the molecular interactions in the core regulation of p53 and the apoptosis initiation module involving Puma, Bcl2 and Bax. Activation of Bax was assumed to be an indicator of apoptosis initiation. Chen et al. (2013) suggested that one of the components in the p53 pathway may control a threshold activation of apoptosis. We hypothesized that ATM auto-activation is the component that controls p53 threshold activation of apoptosis with ATM's multi-site autophosphorylation depending on damage intensity. The constructed model demonstrated how molecular interactions and stress signalling molecule ATM's auto-activation of the p53 network dictate cell fate decisions. Our simulation results are qualitatively consistent with the experimental findings of all-or-none activation of apoptosis and predicted overexpression of Bcl2 as a factor in causing malfunction of the apoptotic switch. We present a simplified yet plausible model of molecular mechanism that controls p53 activation of apoptotic switch.


Asunto(s)
Apoptosis/efectos de los fármacos , Modelos Teóricos , Proteína p53 Supresora de Tumor/fisiología , Proteínas Reguladoras de la Apoptosis/metabolismo , Roturas del ADN de Doble Cadena , Humanos , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína p53 Supresora de Tumor/farmacología , Proteína X Asociada a bcl-2
18.
Front Physiol ; 9: 1328, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319440

RESUMEN

A Boolean model is a simple, discrete and dynamic model without the need to consider the effects at the intermediate levels. However, little effort has been made into constructing activation, inhibition, and protein decay networks, which could indicate the direct roles of a gene (or its synthesized protein) as an activator or inhibitor of a target gene. Therefore, we propose to focus on the general Boolean functions at the subfunction level taking into account the effectiveness of protein decay, and further split the subfunctions into the activation and inhibition domains. As a consequence, we developed a novel data-driven Boolean model; namely, the Fundamental Boolean Model (FBM), to draw insights into gene activation, inhibition, and protein decay. This novel Boolean model provides an intuitive definition of activation and inhibition pathways and includes mechanisms to handle protein decay issues. To prove the concept of the novel model, we implemented a platform using R language, called FBNNet. Our experimental results show that the proposed FBM could explicitly display the internal connections of the mammalian cell cycle between genes separated into the connection types of activation, inhibition and protein decay. Moreover, the method we proposed to infer the gene regulatory networks for the novel Boolean model can be run in parallel and; hence, the computation cost is affordable. Finally, the novel Boolean model and related Fundamental Boolean Networks (FBNs) could show significant trajectories in genes to reveal how genes regulated each other over a given period. This new feature could facilitate further research on drug interventions to detect the side effects of a newly-proposed drug.

19.
Neural Regen Res ; 13(7): 1156-1158, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30028315

RESUMEN

Ca2+ dysregulation is an early event observed in Alzheimer's disease (AD) patients preceding the presence of its clinical symptoms. Dysregulation of neuronal Ca2+ will cause synaptic loss and neuronal death, eventually leading to memory impairments and cognitive decline. Treatments targeting Ca2+ signaling pathways are potential therapeutic strategies against AD. The complicated interactions make it challenging and expensive to study the underlying mechanisms as to how Ca2+ signaling contributes to the pathogenesis of AD. Computational modeling offers new opportunities to study the signaling pathway and test proposed mechanisms. In this mini-review, we present some computational approaches that have been used to study Ca2+ dysregulation of AD by simulating Ca2+ signaling at various levels. We also pointed out the future directions that computational modeling can be done in studying the Ca2+ dysregulation in AD.

20.
PLoS One ; 12(8): e0182743, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28837653

RESUMEN

In Alzheimer's disease (AD), dysregulation of intracellular Ca2+ signalling has been observed as an early event prior to the presence of clinical symptoms and is believed to be a crucial factor contributing to AD pathogenesis. Amyloid-ß oligomers (AßOs) disturb the N-methyl-D-aspartate receptor (NMDAR)-mediated postsynaptic Ca2+ signalling in response to presynaptic stimulation by increasing the availability of extracellular glutamate as well as directly disturbing the NMDARs. The abnormal Ca2+ response can further lead to impairments in long-term potentiation (LTP), an important process in memory formation. In this study, we develop a mathematical model of a CA1 pyramidal dendritic spine and conduct computational experiments. We use this model to mimic alterations by AßOs under AD conditions to investigate how they are involved in the Ca2+ dysregulation in the dendritic spine. The alterations in glutamate availability, as well as NMDAR availability and activity, are studied both individually and globally. The simulation results suggest that alterations in glutamate availability mostly affect the synaptic response and have limited effects on the extrasynaptic receptors. Moreover, overactivation of extrasynaptic NMDARs in AD is unlikely to be induced by presynaptic stimulation, but by upregulation of the resting level of glutamate, possibly resulting from these alterations. Furthermore, internalisation of synaptic NR2A-NMDAR shows greater damage to the postsynaptic Ca2+ response in comparison with the internalisation of NR2B-NMDARs; thus, the suggested neuroprotective role of the latter is very limited during synaptic transmission in AD. We integrate a CaMKII state transition model with the Ca2+ model to further study the effects of alterations of NMDARs in the CaMKII state transition, an important downstream event in the early phase of LTP. The model reveals that cooperation between NR2A- and NR2B-NMDAR is required for LTP induction. Under AD conditions, internalisation of membrane NMDARs is suggested to be the cause of the loss of synapse numbers by disrupting CaMKII-NMDAR formation.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...