Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nature ; 627(8003): 445-452, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383785

RESUMEN

Reversible modification of target proteins by ubiquitin and ubiquitin-like proteins (UBLs) is widely used by eukaryotic cells to control protein fate and cell behaviour1. UFM1 is a UBL that predominantly modifies a single lysine residue on a single ribosomal protein, uL24 (also called RPL26), on ribosomes at the cytoplasmic surface of the endoplasmic reticulum (ER)2,3. UFM1 conjugation (UFMylation) facilitates the rescue of 60S ribosomal subunits (60S) that are released after ribosome-associated quality-control-mediated splitting of ribosomes that stall during co-translational translocation of secretory proteins into the ER3,4. Neither the molecular mechanism by which the UFMylation machinery achieves such precise target selection nor how this ribosomal modification promotes 60S rescue is known. Here we show that ribosome UFMylation in vivo occurs on free 60S and we present sequential cryo-electron microscopy snapshots of the heterotrimeric UFM1 E3 ligase (E3(UFM1)) engaging its substrate uL24. E3(UFM1) binds the L1 stalk, empty transfer RNA-binding sites and the peptidyl transferase centre through carboxy-terminal domains of UFL1, which results in uL24 modification more than 150 Å away. After catalysing UFM1 transfer, E3(UFM1) remains stably bound to its product, UFMylated 60S, forming a C-shaped clamp that extends all the way around the 60S from the transfer RNA-binding sites to the polypeptide tunnel exit. Our structural and biochemical analyses suggest a role for E3(UFM1) in post-termination release and recycling of the large ribosomal subunit from the ER membrane.


Asunto(s)
Retículo Endoplásmico , Procesamiento Proteico-Postraduccional , Subunidades Ribosómicas Grandes de Eucariotas , Ubiquitina-Proteína Ligasas , Sitios de Unión , Biocatálisis , Microscopía por Crioelectrón , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Peptidil Transferasas/química , Peptidil Transferasas/metabolismo , Peptidil Transferasas/ultraestructura , Unión Proteica , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , ARN de Transferencia/metabolismo , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/ultraestructura
3.
Nature ; 627(8003): 437-444, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383789

RESUMEN

Stalled ribosomes at the endoplasmic reticulum (ER) are covalently modified with the ubiquitin-like protein UFM1 on the 60S ribosomal subunit protein RPL26 (also known as uL24)1,2. This modification, which is known as UFMylation, is orchestrated by the UFM1 ribosome E3 ligase (UREL) complex, comprising UFL1, UFBP1 and CDK5RAP3 (ref. 3). However, the catalytic mechanism of UREL and the functional consequences of UFMylation are unclear. Here we present cryo-electron microscopy structures of UREL bound to 60S ribosomes, revealing the basis of its substrate specificity. UREL wraps around the 60S subunit to form a C-shaped clamp architecture that blocks the tRNA-binding sites at one end, and the peptide exit tunnel at the other. A UFL1 loop inserts into and remodels the peptidyl transferase centre. These features of UREL suggest a crucial function for UFMylation in the release and recycling of stalled or terminated ribosomes from the ER membrane. In the absence of functional UREL, 60S-SEC61 translocon complexes accumulate at the ER membrane, demonstrating that UFMylation is necessary for releasing SEC61 from 60S subunits. Notably, this release is facilitated by a functional switch of UREL from a 'writer' to a 'reader' module that recognizes its product-UFMylated 60S ribosomes. Collectively, we identify a fundamental role for UREL in dissociating 60S subunits from the SEC61 translocon and the basis for UFMylation in regulating protein homeostasis at the ER.


Asunto(s)
Retículo Endoplásmico , Procesamiento Proteico-Postraduccional , Subunidades Ribosómicas Grandes de Eucariotas , Ubiquitina-Proteína Ligasas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestructura , Microscopía por Crioelectrón , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Homeostasis , Membranas Intracelulares/metabolismo , Peptidil Transferasas/química , Peptidil Transferasas/metabolismo , Peptidil Transferasas/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , ARN de Transferencia/metabolismo , Canales de Translocación SEC/química , Canales de Translocación SEC/metabolismo , Canales de Translocación SEC/ultraestructura , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/ultraestructura , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/ultraestructura , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura
4.
FEBS J ; 290(21): 5040-5056, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36680403

RESUMEN

Ubiquitin Fold Modifier-1 (UFM1) is a ubiquitin-like modifier (UBL) that is posttranslationally attached to lysine residues on substrates via a dedicated system of enzymes conserved in most eukaryotes. Despite the structural similarity between UFM1 and ubiquitin, the UFMylation machinery employs unique mechanisms that ensure fidelity. While physiological triggers and consequences of UFMylation are not entirely clear, its biological importance is epitomized by mutations in the UFMylation pathway in human pathophysiology including musculoskeletal and neurodevelopmental diseases. Some of these diseases can be explained by the increased endoplasmic reticulum (ER) stress and disrupted translational homeostasis observed upon loss of UFMylation. The roles of UFM1 in these processes likely stem from its function at the ER where ribosomes are UFMylated in response to translational stalling. In addition, UFMylation has been implicated in other cellular processes including DNA damage response and telomere maintenance. Hence, the study of UFM1 pathway mechanics and its biological function will reveal insights into fundamental cell biology and is likely to afford new therapeutic opportunities for the benefit of human health. To this end, we herein provide a comprehensive guide to the current state of knowledge of UFM1 biogenesis, conjugation, and function with an emphasis on the underlying mechanisms.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas , Humanos , Proteínas/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
5.
EMBO J ; 41(21): e111015, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36121123

RESUMEN

Protein UFMylation, i.e., post-translational modification with ubiquitin-fold modifier 1 (UFM1), is essential for cellular and endoplasmic reticulum homeostasis. Despite its biological importance, we have a poor understanding of how UFM1 is conjugated onto substrates. Here, we use a rebuilding approach to define the minimal requirements of protein UFMylation. We find that the reported cognate E3 ligase UFL1 is inactive on its own and instead requires the adaptor protein UFBP1 to form an active E3 ligase complex. Structure predictions suggest the UFL1/UFBP1 complex to be made up of winged helix (WH) domain repeats. We show that UFL1/UFBP1 utilizes a scaffold-type E3 ligase mechanism that activates the UFM1-conjugating E2 enzyme, UFC1, for aminolysis. Further, we characterize a second adaptor protein CDK5RAP3 that binds to and forms an integral part of the ligase complex. Unexpectedly, we find that CDK5RAP3 inhibits UFL1/UFBP1 ligase activity in vitro. Results from reconstituting ribosome UFMylation suggest that CDK5RAP3 functions as a substrate adaptor that directs UFMylation to the ribosomal protein RPL26. In summary, our reconstitution approach reveals the biochemical basis of UFMylation and regulatory principles of this atypical E3 ligase complex.


Asunto(s)
Retículo Endoplásmico , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Retículo Endoplásmico/metabolismo , Procesamiento Proteico-Postraduccional , Estrés del Retículo Endoplásmico/fisiología , Unión Proteica , Proteínas Ribosómicas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
6.
Cell Rep ; 40(5): 111168, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35926457

RESUMEN

An essential first step in the post-translational modification of proteins with UFM1, UFMylation, is the proteolytic cleavage of pro-UFM1 to expose a C-terminal glycine. Of the two UFM1-specific proteases (UFSPs) identified in humans, only UFSP2 is reported to be active, since the annotated sequence of UFSP1 lacks critical catalytic residues. Nonetheless, efficient UFM1 maturation occurs in cells lacking UFSP2, suggesting the presence of another active protease. We herein identify UFSP1 translated from a non-canonical start site to be this protease. Cells lacking both UFSPs show complete loss of UFMylation resulting from an absence of mature UFM1. While UFSP2, but not UFSP1, removes UFM1 from the ribosomal subunit RPL26, UFSP1 acts earlier in the pathway to mature UFM1 and cleave a potential autoinhibitory modification on UFC1, thereby controlling activation of UFMylation. In summary, our studies reveal important distinctions in substrate specificity and localization-dependent functions for the two proteases in regulating UFMylation.


Asunto(s)
Péptido Hidrolasas , Procesamiento Proteico-Postraduccional , Humanos , Cisteína Endopeptidasas/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas/metabolismo , Proteínas Ribosómicas/metabolismo , Especificidad por Sustrato
7.
Methods Enzymol ; 667: 101-121, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35525539

RESUMEN

Pseudokinases are emerging as critical components of cell signaling pathways. Consequently, the ability to obtain large quantities of pure protein for structural characterization and drug discovery efforts has become essential for the study of these proteins. Small molecules binding to pseudokinases may induce allosteric changes and serve as valuable tools to study the physiological roles of these "dead" enzymes. The IRAK family of kinases are key components of the innate immune response and the active IRAK family members, IRAK-1 and -4, have been extensively studied. However, the other two IRAKs, IRAK-2 and IRAK-3, are classified as pseudokinases and their detailed functions and roles remain to be described. In this chapter, we present comprehensive protocols for the purification of IRAKs, the crystallization of the pseudokinase domain of IRAK3, and a high-throughput drug screening pipeline using thermal shift and biolayer-interferometry assays to identify small molecule binders.


Asunto(s)
Inmunidad Innata , Transducción de Señal , Cristalización , Evaluación Preclínica de Medicamentos
8.
Semin Cell Dev Biol ; 132: 86-96, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35216867

RESUMEN

The reversible attachment of ubiquitin (Ub) and ubiquitin like modifiers (Ubls) to proteins are crucial post-translational modifications (PTMs) for many cellular processes. Not only do cells possess hundreds of ligases to mediate substrate specific modification with Ub and Ubls, but they also have a repertoire of more than 100 dedicated enzymes for the specific removal of ubiquitin (Deubiquitinases or DUBs) and Ubl modifications (Ubl-specific proteases or ULPs). Over the past two decades, there has been significant progress in our understanding of how DUBs and ULPs function at a molecular level and many novel DUBs and ULPs, including several new DUB classes, have been identified. Here, the development of chemical tools that can bind and trap active DUBs has played a key role. Since the introduction of the first activity-based probe for DUBs in 1986, several innovations have led to the development of more sophisticated tools to study DUBs and ULPs. In this review we discuss how chemical biology has led to the development of activity-based probes and substrates that have been invaluable to the study of DUBs and ULPs. We summarise our currently available toolbox, highlight the main achievements and give an outlook of how these tools may be applied to gain a better understanding of the regulatory mechanisms of DUBs and ULPs.


Asunto(s)
Péptido Hidrolasas , Ubiquitina , Péptido Hidrolasas/metabolismo , Ubiquitina/metabolismo , Procesamiento Proteico-Postraduccional , Enzimas Desubicuitinizantes/metabolismo , Biología , Ubiquitinación
9.
Mol Cell ; 82(1): 15-29, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34813758

RESUMEN

Deubiquitinases (DUBs) are specialized proteases that remove ubiquitin from substrates or cleave within ubiquitin chains to regulate ubiquitylation and therefore play important roles in eukaryotic biology. Dysregulation of DUBs is implicated in several human diseases, highlighting the importance of DUB function. In addition, many pathogenic bacteria and viruses encode and deploy DUBs to manipulate host immune responses and establish infectious diseases in humans and animals. Hence, therapeutic targeting of DUBs is an increasingly explored area that requires an in-depth mechanistic understanding of human and pathogenic DUBs. In this review, we summarize the multiple layers of regulation that control autoinhibition, activation, and substrate specificity of DUBs. We discuss different strategies to inhibit DUBs and the progress in developing selective small-molecule DUB inhibitors. Finally, we propose a classification system of DUB inhibitors based on their mode of action.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Enzimas Desubicuitinizantes , Inhibidores Enzimáticos/uso terapéutico , SARS-CoV-2 , Ubiquitinación/efectos de los fármacos , COVID-19/enzimología , Enzimas Desubicuitinizantes/antagonistas & inhibidores , Enzimas Desubicuitinizantes/metabolismo , Humanos
10.
Mol Cell ; 81(20): 4176-4190.e6, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34529927

RESUMEN

Of the eight distinct polyubiquitin (polyUb) linkages that can be assembled, the roles of K48-linked polyUb (K48-polyUb) are the most established, with K48-polyUb modified proteins being targeted for degradation. MINDY1 and MINDY2 are members of the MINDY family of deubiquitinases (DUBs) that have exquisite specificity for cleaving K48-polyUb, yet we have a poor understanding of their catalytic mechanism. Here, we analyze the crystal structures of MINDY1 and MINDY2 alone and in complex with monoUb, di-, and penta-K48-polyUb, identifying 5 distinct Ub binding sites in the catalytic domain that explain how these DUBs sense both Ub chain length and linkage type to cleave K48-polyUb chains. The activity of MINDY1/2 is inhibited by the Cys-loop, and we find that substrate interaction relieves autoinhibition to activate these DUBs. We also find that MINDY1/2 use a non-canonical catalytic triad composed of Cys-His-Thr. Our findings highlight multiple layers of regulation modulating DUB activity in MINDY1 and MINDY2.


Asunto(s)
Enzimas Desubicuitinizantes/metabolismo , Poliubiquitina/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía , Enzimas Desubicuitinizantes/genética , Activación Enzimática , Humanos , Cinética , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Dispersión del Ángulo Pequeño , Relación Estructura-Actividad , Ubiquitina Tiolesterasa/genética , Ubiquitinación
11.
Sci Adv ; 7(39): eabc7371, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34559557

RESUMEN

Ubiquitin-fold modifier 1 (UFM1) is involved in neural and erythroid development, yet its biological roles in these processes are unknown. Here, we generated zebrafish models deficient in Ufm1 and Ufl1 that exhibited telomere shortening associated with developmental delay, impaired hematopoiesis and premature aging. We further report that HeLa cells lacking UFL1 have instability of telomeres replicated by leading-strand synthesis. We uncover that MRE11 UFMylation is necessary for the recruitment of the phosphatase PP1-α leading to dephosphorylation of NBS1. In the absence of UFMylation, NBS1 remains phosphorylated, thereby reducing MRN recruitment to telomeres. The absence of MRN at telomeres favors the formation of the TRF2-Apollo/SNM1 complex consistent with the loss of leading telomeres. These results suggest that MRE11-UFMylation may serve as module to recruit PP1-α. Last, zebrafish expressing Mre11 that cannot be UFMylated phenocopy Ufm1-deficient zebrafish, demonstrating that UFMylation of MRE11 is a previously undescribed evolutionarily conserved mechanisms regulating telomere length.

12.
Biochem J ; 478(13): 2517-2531, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34198325

RESUMEN

The COVID-19 pandemic has emerged as the biggest life-threatening disease of this century. Whilst vaccination should provide a long-term solution, this is pitted against the constant threat of mutations in the virus rendering the current vaccines less effective. Consequently, small molecule antiviral agents would be extremely useful to complement the vaccination program. The causative agent of COVID-19 is a novel coronavirus, SARS-CoV-2, which encodes at least nine enzymatic activities that all have drug targeting potential. The papain-like protease (PLpro) contained in the nsp3 protein generates viral non-structural proteins from a polyprotein precursor, and cleaves ubiquitin and ISG protein conjugates. Here we describe the expression and purification of PLpro. We developed a protease assay that was used to screen a custom compound library from which we identified dihydrotanshinone I and Ro 08-2750 as compounds that inhibit PLpro in protease and isopeptidase assays and also inhibit viral replication in cell culture-based assays.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Compuestos de Anilina/farmacología , Animales , Benzamidas/farmacología , Chlorocebus aethiops , Proteasas Similares a la Papaína de Coronavirus/genética , Proteasas Similares a la Papaína de Coronavirus/aislamiento & purificación , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Sinergismo Farmacológico , Pruebas de Enzimas , Flavinas/farmacología , Transferencia Resonante de Energía de Fluorescencia , Furanos/farmacología , Ensayos Analíticos de Alto Rendimiento , Concentración 50 Inhibidora , Naftalenos/farmacología , Fenantrenos/farmacología , Quinonas/farmacología , Reproducibilidad de los Resultados , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/crecimiento & desarrollo , Bibliotecas de Moléculas Pequeñas/química , Células Vero , Replicación Viral/efectos de los fármacos
13.
Nat Chem Biol ; 17(8): 843-844, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34239126
14.
PLoS One ; 16(7): e0253364, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34270554

RESUMEN

Of the 16 non-structural proteins (Nsps) encoded by SARS CoV-2, Nsp3 is the largest and plays important roles in the viral life cycle. Being a large, multidomain, transmembrane protein, Nsp3 has been the most challenging Nsp to characterize. Encoded within Nsp3 is the papain-like protease domain (PLpro) that cleaves not only the viral polypeptide but also K48-linked polyubiquitin and the ubiquitin-like modifier, ISG15, from host cell proteins. We here compare the interactors of PLpro and Nsp3 and find a largely overlapping interactome. Intriguingly, we find that near full length Nsp3 is a more active protease compared to the minimal catalytic domain of PLpro. Using a MALDI-TOF based assay, we screen 1971 approved clinical compounds and identify five compounds that inhibit PLpro with IC50s in the low micromolar range but showed cross reactivity with other human deubiquitinases and had no significant antiviral activity in cellular SARS-CoV-2 infection assays. We therefore looked for alternative methods to block PLpro activity and engineered competitive nanobodies that bind to PLpro at the substrate binding site with nanomolar affinity thus inhibiting the enzyme. Our work highlights the importance of studying Nsp3 and provides tools and valuable insights to investigate Nsp3 biology during the viral infection cycle.


Asunto(s)
Antivirales/farmacología , Inhibidores de Proteasas/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Anticuerpos de Cadena Única/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Células A549 , Complejo Antígeno-Anticuerpo , Humanos , Concentración 50 Inhibidora , ARN Polimerasa Dependiente del ARN/inmunología , ARN Polimerasa Dependiente del ARN/metabolismo , Anticuerpos de Cadena Única/inmunología , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/metabolismo
15.
Structure ; 29(3): 238-251.e4, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33238146

RESUMEN

Interleukin-1 receptor associated kinases (IRAKs) are key players in innate immune signaling that mediate the host response to pathogens. In contrast to the active kinases IRAK1 and IRAK4, IRAK2 and IRAK3 are pseudokinases lacking catalytic activity and their functions are poorly understood. IRAK3 is thought to be a negative regulator of innate immune signaling and mutations in IRAK3 are associated with asthma and cancer. Here, we report the crystal structure of the human IRAK3 pseudokinase domain in a closed, pseudoactive conformation. IRAK3 dimerizes in a unique way through a head-to-head arrangement not observed in any other kinases. Multiple conserved cysteine residues imply a potential redox control of IRAK3 conformation and dimerization. By analyzing asthma-associated mutations, we identify an evolutionarily conserved surface on IRAK3 that could form an interaction interface with IRAK4, suggesting a model for the negative regulation of IRAK4 by IRAK3.


Asunto(s)
Sitio Alostérico , Quinasas Asociadas a Receptores de Interleucina-1/química , Multimerización de Proteína , Regulación Alostérica , Animales , Dominio Catalítico , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Células Sf9 , Spodoptera
16.
Biol Chem ; 400(4): 555-563, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30465710

RESUMEN

Upon activation of the B cell antigen receptor (BCR), the spleen tyrosine kinase (Syk) and the Src family kinase Lyn phosphorylate tyrosines of the immunoreceptor tyrosine-based activation motif (ITAM) of Igα and Igß which further serve as binding sites for the SH2 domains of these kinases. Using a synthetic biology approach, we dissect the roles of different ITAM residues of Igα in Syk activation. We found that a leucine to glycine mutation at the Y+3 position after the first ITAM tyrosine prevents Syk binding and activation. However, a pre-activated Syk can still phosphorylate this tyrosine in trans. Our data show that the formation of a Syk/ITAM initiation complex and trans-ITAM phosphorylation is crucial for BCR signal amplification. In contrast, the interaction of Lyn with the first ITAM tyrosine is not altered by the leucine to glycine mutation. In addition, our study suggests that an ITAM-bound Syk phosphorylates the non-ITAM tyrosine Y204 of Igα only in cis. Collectively, our reconstitution experiments suggest a model whereby first trans-phosphorylation amplifies the BCR signal and subsequently cis-phosphorylation couples the receptor to downstream signaling elements.


Asunto(s)
Linfocitos B/metabolismo , Activación de Linfocitos , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal , Biología Sintética , Animales , Linfocitos B/inmunología , Células Cultivadas , Ratones , Ratones Noqueados , Receptores de Antígenos de Linfocitos B/inmunología , Transducción de Señal/inmunología
17.
J Biol Chem ; 294(8): 2651-2664, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30587576

RESUMEN

Cullin-RING E3 ubiquitin ligases (CRLs) are large and diverse multisubunit protein complexes that contribute to about one-fifth of ubiquitin-dependent protein turnover in cells. CRLs are activated by the attachment of the ubiquitin-like protein neural precursor cell expressed, developmentally down-regulated 8 (NEDD8) to the cullin subunits. This cullin neddylation is essential for a plethora of CRL-regulated cellular processes and is vital for life. In mammals, neddylation is promoted by the five co-E3 ligases, defective in cullin neddylation 1 domain-containing 1-5 (DCNL1-5); however, their functional regulation within the CRL complex remains elusive. We found here that the ubiquitin-associated (UBA) domain-containing DCNL1 is monoubiquitylated when bound to CRLs and that this monoubiquitylation depends on the CRL-associated Ariadne RBR ligases TRIAD1 (ARIH2) and HHARI (ARIH1) and strictly requires the DCNL1's UBA domain. Reconstitution of DCNL1 monoubiquitylation in vitro revealed that autoubiquitylated TRIAD1 mediates binding to the UBA domain and subsequently promotes a single ubiquitin attachment to DCNL1 in a mechanism previously dubbed coupled monoubiquitylation. Moreover, we provide evidence that DCNL1 monoubiquitylation is required for efficient CRL activity, most likely by remodeling CRLs and their substrate receptors. Collectively, this work identifies DCNL1 as a critical target of Ariadne RBR ligases and coupled monoubiquitylation of DCNL1 as an integrated mechanism that affects CRL activity and client-substrate ubiquitylation at multiple levels.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteína NEDD8/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas Portadoras/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteína NEDD8/genética , Dominios Proteicos , Proteínas , Proteínas Proto-Oncogénicas/genética , Ubiquitina-Proteína Ligasas/genética
18.
J Cell Sci ; 131(10)2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29685892

RESUMEN

Protein ubiquitylation is a dynamic post-translational modification that can be reversed by deubiquitylating enzymes (DUBs). It is unclear how the small number (∼100) of DUBs present in mammalian cells regulate the thousands of different ubiquitylation events. Here, we analysed annotated transcripts of human DUBs and found ∼300 ribosome-associated transcripts annotated as protein coding, which thus increases the total number of DUBs. By using USP35, a poorly studied DUB, as a case study, we provide evidence that alternative isoforms contribute to the functional expansion of DUBs. We show that there are two different USP35 isoforms that localise to different intracellular compartments and have distinct functions. Our results reveal that isoform 1 is an anti-apoptotic factor that inhibits staurosporine- and TNF-related apoptosis-inducing ligand (TRAIL; also known as TNFSF10)-induced apoptosis. In contrast, USP35 isoform 2 is an integral membrane protein of the endoplasmic reticulum (ER) that is also present at lipid droplets. Manipulations of isoform 2 levels cause rapid ER stress, likely through deregulation of lipid homeostasis, and lead to cell death. Our work highlights how alternative isoforms provide functional expansion of DUBs and sets directions for future research.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Endopeptidasas/metabolismo , Isoformas de Proteínas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Apoptosis , Endopeptidasas/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Isoformas de Proteínas/genética , Transporte de Proteínas , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitinación
19.
Mol Cell ; 70(1): 150-164.e6, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29576527

RESUMEN

Deubiquitinating enzymes (DUBs) are important regulators of ubiquitin signaling. Here, we report the discovery of deubiquitinating activity in ZUFSP/C6orf113. High-resolution crystal structures of ZUFSP in complex with ubiquitin reveal several distinctive features of ubiquitin recognition and catalysis. Our analyses reveal that ZUFSP is a novel DUB with no homology to any known DUBs, leading us to classify ZUFSP as the seventh DUB family. Intriguingly, the minimal catalytic domain does not cleave polyubiquitin. We identify two ubiquitin binding domains in ZUFSP: a ZHA (ZUFSP helical arm) that binds to the distal ubiquitin and an atypical UBZ domain in ZUFSP that binds to polyubiquitin. Importantly, both domains are essential for ZUFSP to selectively cleave K63-linked polyubiquitin. We show that ZUFSP localizes to DNA lesions, where it plays an important role in genome stability pathways, functioning to prevent spontaneous DNA damage and also promote cellular survival in response to exogenous DNA damage.


Asunto(s)
Núcleo Celular/enzimología , Daño del ADN , Enzimas Desubicuitinizantes/metabolismo , Inestabilidad Genómica , Poliubiquitina/metabolismo , Sitios de Unión , Supervivencia Celular , Enzimas Desubicuitinizantes/química , Enzimas Desubicuitinizantes/genética , Células HEK293 , Células HeLa , Humanos , Células Jurkat , Lisina , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad , Especificidad por Sustrato , Ubiquitinación
20.
J Cell Sci ; 130(12): 1997-2006, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28476940

RESUMEN

Deubiquitylating (or deubiquitinating) enzymes (DUBs) are proteases that reverse protein ubiquitylation and therefore modulate the outcome of this post-translational modification. DUBs regulate a variety of intracellular processes, including protein turnover, signalling pathways and the DNA damage response. They have also been linked to a number of human diseases, such as cancer, and inflammatory and neurodegenerative disorders. Although we are beginning to better appreciate the role of DUBs in basic cell biology and their importance for human health, there are still many unknowns. Central among these is the conundrum of how the small number of ∼100 DUBs encoded in the human genome is capable of regulating the thousands of ubiquitin modification sites detected in human cells. This Commentary addresses the biological mechanisms employed to modulate and expand the functions of DUBs, and sets directions for future research aimed at elucidating the details of these fascinating processes.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Exploitation of the host cell ubiquitin machinery by microbial effector proteins' by Yi-Han Lin and Matthias P. Machner (J. Cell Sci.130, 1985-1996). 'Cell scientist to watch - Mads Gyrd-Hansen' (J. Cell Sci.130, 1981-1983).


Asunto(s)
Regulación de la Expresión Génica , Procesamiento Proteico-Postraduccional , Ubiquitina/metabolismo , Ubiquitinación , Animales , Daño del ADN , Endopeptidasas/metabolismo , Humanos , Inflamación , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Mapeo de Interacción de Proteínas , Proteolisis , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...