Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716875

RESUMEN

Argonautes are an evolutionary conserved family of programmable nucleases that identify target nucleic acids using small guide oligonucleotides. In contrast to eukaryotic Argonautes (eAgos) that act on RNA, most studied prokaryotic Argonautes (pAgos) recognize DNA targets. Similarly to eAgos, pAgos can protect prokaryotic cells from invaders, but the biogenesis of guide oligonucleotides that confer them specificity to their targets remains poorly understood. Here, we have identified a new group of RNA-guided pAgo nucleases and demonstrated that a representative pAgo from this group, AmAgo from the mesophilic bacterium Alteromonas macleodii, binds guide RNAs of varying lengths for specific DNA targeting. Unlike most pAgos and eAgos, AmAgo is strictly specific to hydroxylated RNA guides containing a 5'-adenosine. AmAgo and related pAgos are co-encoded with a conserved RNA endonuclease from the HEPN superfamily (Ago-associated protein, Agap-HEPN). In vitro, Agap cleaves RNA between guanine and adenine nucleotides producing hydroxylated 5'-A guide oligonucleotides bound by AmAgo. In vivo, Agap cooperates with AmAgo in acquiring guide RNAs and counteracting bacteriophage infection. The AmAgo-Agap pair represents the first example of a pAgo system that autonomously produces RNA guides for DNA targeting and antiviral defense, which holds promise for programmable DNA targeting in biotechnology.

2.
Biochim Biophys Acta Gene Regul Mech ; 1867(2): 195032, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38692564

RESUMEN

Small non-coding 6S RNA mimics DNA promoters and binds to the σ70 holoenzyme of bacterial RNA polymerase (RNAP) to suppress transcription of various genes mainly during the stationary phase of cell growth or starvation. This inhibition can be relieved upon synthesis of short product RNA (pRNA) performed by RNAP from the 6S RNA template. Here, we have shown that pRNA synthesis depends on specific contacts of 6S RNA with RNAP and interactions of the σ finger with the RNA template in the active site of RNAP, and is also modulated by the secondary channel factors. We have adapted a molecular beacon assay with fluorescently labeled σ70 to analyze 6S RNA release during pRNA synthesis. We found the kinetics of 6S RNA release to be oppositely affected by mutations in the σ finger and in the CRE pocket of core RNAP, similarly to the reported role of these regions in promoter-dependent transcription. Secondary channel factors, DksA and GreB, inhibit pRNA synthesis and 6S RNA release from RNAP, suggesting that they may contribute to the 6S RNA-mediated switch in transcription during stringent response. Our results demonstrate that pRNA synthesis depends on a similar set of contacts between RNAP and 6S RNA as in the case of promoter-dependent transcription initiation and reveal that both processes can be regulated by universal transcription factors acting on RNAP.

3.
Nat Microbiol ; 9(5): 1368-1381, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38622379

RESUMEN

Two prokaryotic defence systems, prokaryotic Argonautes (pAgos) and CRISPR-Cas, detect and cleave invader nucleic acids using complementary guides and the nuclease activities of pAgo or Cas proteins. However, not all pAgos are active nucleases. A large clade of short pAgos bind nucleic acid guides but lack nuclease activity, suggesting a different mechanism of action. Here we investigate short pAgos associated with a putative effector nuclease, NbaAgo from Novosphingopyxis baekryungensis and CmeAgo from Cupriavidus metallidurans. We show that these pAgos form a heterodimeric complex with co-encoded effector nucleases (short prokaryotic Argonaute, DNase and RNase associated (SPARDA)). RNA-guided target DNA recognition unleashes the nuclease activity of SPARDA leading to indiscriminate collateral cleavage of DNA and RNA. Activation of SPARDA by plasmids or phages results in degradation of cellular DNA and cell death or dormancy, conferring target-specific population protection and expanding the range of known prokaryotic immune systems.


Asunto(s)
Proteínas Argonautas , Proteínas Bacterianas , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Sistemas CRISPR-Cas , Desoxirribonucleasas/metabolismo , Desoxirribonucleasas/genética , Desoxirribonucleasas/química , Plásmidos/genética , Plásmidos/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , ADN/metabolismo , ADN/genética
4.
Biochimie ; 220: 39-47, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38128776

RESUMEN

Many prokaryotic Argonaute (pAgo) proteins act as programmable nucleases that use small guide DNAs for recognition and cleavage of complementary target DNA. Recent studies suggested that pAgos participate in cell defense against invader DNA and may also be involved in other genetic processes, including DNA replication and repair. The ability of pAgos to recognize specific targets potentially make them an invaluable tool for DNA manipulations. Here, we demonstrate that DNA-guided DNA-targeting pAgo nucleases from three bacterial species, DloAgo from Dorea longicatena, CbAgo from Clostridium butyricum and KmAgo from Kurthia massiliensis, can sense site-specific modifications in the target DNA, including 8-oxoguanine, thymine glycol, ethenoadenine and pyrimidine dimers. The effects of DNA modifications on the activity of pAgos strongly depend on their positions relative to the site of cleavage and are comparable to or exceed the effects of guide-target mismatches at corresponding positions. For all tested pAgos, the strongest effects are observed when DNA lesions are located at the cleavage position. The results demonstrate that DNA cleavage by pAgos is strongly affected by DNA modifications, thus making possible their use as sensors of DNA damage.


Asunto(s)
Proteínas Argonautas , Proteínas Bacterianas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , ADN/metabolismo , Daño del ADN , Guanina/metabolismo , Guanina/química , Guanina/análogos & derivados , Clostridium butyricum/metabolismo , Clostridium butyricum/genética , Timina/metabolismo , Timina/química , Timina/análogos & derivados
5.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834006

RESUMEN

Emerging and re-emerging viruses periodically cause outbreaks and epidemics around the world, which ultimately lead to global events such as the COVID-19 pandemic. Thus, the urgent need for new antiviral drugs is obvious. Over more than a century of antiviral development, nucleoside analogs have proven to be promising agents against diversified DNA and RNA viruses. Here, we present the synthesis and evaluation of the antiviral activity of nucleoside analogs and their deglycosylated derivatives based on a hydroxybenzo[4,5]imidazo[1,2-c]pyrimidin-1(2H)-one scaffold. The antiviral activity was evaluated against a panel of structurally and phylogenetically diverse RNA and DNA viruses. The leader compound showed micromolar activity against representatives of the family Coronaviridae, including SARS-CoV-2, as well as against respiratory syncytial virus in a submicromolar range without noticeable toxicity for the host cells. Surprisingly, methylation of the aromatic hydroxyl group of the leader compound resulted in micromolar activity against the varicella-zoster virus without any significant impact on cell viability. The leader compound was shown to be a weak inhibitor of the SARS-CoV-2 RNA-dependent RNA polymerase. It also inhibited biocondensate formation important for SARS-CoV-2 replication. The active compounds may be considered as a good starting point for further structure optimization and mechanistic and preclinical studies.


Asunto(s)
Nucleósidos , Virus ARN , Humanos , Nucleósidos/farmacología , Nucleósidos/química , Antivirales/farmacología , Antivirales/química , ARN Viral , Pandemias , SARS-CoV-2 , ADN
6.
Microbiol Spectr ; 11(3): e0414622, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37102866

RESUMEN

Prokaryotic Argonaute (pAgo) proteins are guide-dependent nucleases that function in host defense against invaders. Recently, it was shown that TtAgo from Thermus thermophilus also participates in the completion of DNA replication by decatenating chromosomal DNA. Here, we show that two pAgos from cyanobacteria Synechococcus elongatus (SeAgo) and Limnothrix rosea (LrAgo) are active in heterologous Escherichia coli and aid cell division in the presence of the gyrase inhibitor ciprofloxacin, depending on the host double-strand break repair machinery. Both pAgos are preferentially loaded with small guide DNAs (smDNAs) derived from the sites of replication termination. Ciprofloxacin increases the amounts of smDNAs from the termination region and from the sites of genomic DNA cleavage by gyrase, suggesting that smDNA biogenesis depends on DNA replication and is stimulated by gyrase inhibition. Ciprofloxacin enhances asymmetry in the distribution of smDNAs around Chi sites, indicating that it induces double-strand breaks that serve as a source of smDNA during their processing by RecBCD. While active in E. coli, SeAgo does not protect its native host S. elongatus from ciprofloxacin. These results suggest that pAgo nucleases may help to complete replication of chromosomal DNA by promoting chromosome decatenation or participating in the processing of gyrase cleavage sites, and may switch their functional activities depending on the host species. IMPORTANCE Prokaryotic Argonautes (pAgos) are programmable nucleases with incompletely understood functions in vivo. In contrast to eukaryotic Argonautes, most studied pAgos recognize DNA targets. Recent studies suggested that pAgos can protect bacteria from invader DNA and counteract phage infection and may also have other functions including possible roles in DNA replication, repair, and gene regulation. Here, we have demonstrated that two cyanobacterial pAgos, SeAgo and LrAgo, can assist DNA replication and facilitate cell division in the presence of topoisomerase inhibitors in Escherichia coli. They are specifically loaded with small guide DNAs from the region of replication termination and protect the cells from the action of the gyrase inhibitor ciprofloxacin, suggesting that they help to complete DNA replication and/or repair gyrase-induced breaks. The results show that pAgo proteins may serve as a backup to topoisomerases under conditions unfavorable for DNA replication and may modulate the resistance of host bacterial strains to antibiotics.


Asunto(s)
Proteínas Bacterianas , Escherichia coli , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Inhibidores de Topoisomerasa/metabolismo , Bacterias/genética , Ciprofloxacina/farmacología , ADN/metabolismo , División Celular
7.
Nucleic Acids Res ; 51(10): 5106-5124, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37094066

RESUMEN

Prokaryotic Argonaute proteins (pAgos) are homologs of eukaryotic Argonautes (eAgos) and are also thought to play a role in cell defense against invaders. However, pAgos are much more diverse than eAgos and little is known about their functional activities and target specificities in vivo. Here, we describe five pAgos from mesophilic bacteria that act as programmable DNA endonucleases and analyze their ability to target chromosomal and invader DNA. In vitro, the analyzed proteins use small guide DNAs for precise cleavage of single-stranded DNA at a wide range of temperatures. Upon their expression in Escherichia coli, all five pAgos are loaded with small DNAs preferentially produced from plasmids and chromosomal regions of replication termination. One of the tested pAgos, EmaAgo from Exiguobacterium marinum, can induce DNA interference between homologous sequences resulting in targeted processing of multicopy plasmid and genomic elements. EmaAgo also protects bacteria from bacteriophage infection, by loading phage-derived guide DNAs and decreasing phage DNA content and phage titers. Thus, the ability of pAgos to target multicopy elements may be crucial for their protective function. The wide spectrum of pAgo activities suggests that they may have diverse functions in vivo and paves the way for their use in biotechnology.


Asunto(s)
Proteínas Argonautas , Bacterias , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Bacterias/genética , ADN/metabolismo , Células Procariotas/metabolismo , Plásmidos/genética , Eucariontes/genética , Endonucleasas/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo
8.
Nucleic Acids Res ; 51(8): 4086-4099, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36987855

RESUMEN

Prokaryotic Argonautes (pAgos) are programmable nucleases involved in cell defense against invading DNA. In vitro, pAgos can bind small single-stranded guide DNAs to recognize and cleave complementary DNA. In vivo, pAgos preferentially target plasmids, phages and multicopy genetic elements. Here, we show that CbAgo nuclease from Clostridium butyricum can be used for genomic DNA engineering in bacteria. We demonstrate that CbAgo loaded with plasmid-derived guide DNAs can recognize and cleave homologous chromosomal loci, and define the minimal length of homology required for this targeting. Cleavage of plasmid DNA at an engineered site of the I-SceI meganuclease increases guide DNA loading into CbAgo and enhances processing of homologous chromosomal loci. Analysis of guide DNA loading into CbAgo also reveals off-target sites of I-SceI in the Escherichia coli genome, demonstrating that pAgos can be used for highly sensitive detection of double-stranded breaks in genomic DNA. Finally, we show that CbAgo-dependent targeting of genomic loci with plasmid-derived guide DNAs promotes homologous recombination between plasmid and chromosomal DNA, depending on the catalytic activity of CbAgo. Specific targeting of plasmids with Argonautes can be used to integrate plasmid-encoded sequences into the chromosome thus enabling genome editing.


Asunto(s)
ADN , Edición Génica , Plásmidos/genética , ADN/metabolismo , Bacterias/genética , ADN de Cadena Simple , Endonucleasas/metabolismo
9.
Biochimie ; 209: 142-149, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36804511

RESUMEN

Prokaryotic Argonaute (pAgo) proteins are programmable nucleases with great promise in genetic engineering and biotechnology. Previous studies identified several DNA-targeting pAgo nucleases from mesophilic and thermophilic prokaryotic species that are active in various temperature ranges. However, the effects of temperature on the specificity of target recognition and cleavage by pAgos have not been studied. Here, we describe a thermostable pAgo nuclease from the thermophilic bacterium Thermobrachium celere, TceAgo. We show that TceAgo preferentially uses 5'-phosphorylated small DNA guides and can perform specific cleavage of both single-stranded and double-stranded DNA substrates in a wide range of temperatures. Single-nucleotide mismatches between guide and target molecules differently change the reaction efficiency depending on the mismatch position, with the fidelity of target recognition greatly increased at elevated temperatures. Thus, TceAgo can serve as a tool to allow specific detection and cleavage of DNA targets in a temperature-dependent manner. The results demonstrate that the specificity of programmable nucleases can be strongly affected by the reaction conditions, which should be taken into account when using these nucleases in various in vitro and in vivo applications.


Asunto(s)
ADN , Células Procariotas , Temperatura , ADN/metabolismo , Bacterias/metabolismo , Desoxirribonucleasas/metabolismo
10.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36834771

RESUMEN

The SARS-CoV-2 betacoronavirus pandemic has claimed more than 6.5 million lives and, despite the development and use of COVID-19 vaccines, remains a major global public health problem. The development of specific drugs for the treatment of this disease remains a very urgent task. In the context of a repurposing strategy, we previously screened a library of nucleoside analogs showing different types of biological activity against the SARS-CoV-2 virus. The screening revealed compounds capable of inhibiting the reproduction of SARS-CoV-2 with EC50 values in the range of 20-50 µM. Here we present the design and synthesis of various analogs of the leader compounds, the evaluation of their cytotoxicity and antiviral activity against SARS-CoV-2 in cell cultures, as well as experimental data on RNA-dependent RNA polymerase inhibition. Several compounds have been shown to prevent the interaction between the SARS-CoV-2 RNA-dependent RNA polymerase and the RNA substrate, likely inhibiting virus replication. Three of the synthesized compounds have also been shown to inhibit influenza virus. The structures of these compounds can be used for further optimization in order to develop an antiviral drug.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Nucleósidos/química , ARN Viral , Vacunas contra la COVID-19/farmacología , Antivirales/farmacología , Replicación Viral , ARN Polimerasa Dependiente del ARN
11.
Biochimie ; 206: 81-88, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36252889

RESUMEN

SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) is the key enzyme required for viral replication and mRNA synthesis. RdRp is one of the most conserved viral proteins and a promising target for antiviral drugs and inhibitors. At the same time, analysis of public databases reveals multiple variants of SARS-CoV-2 genomes with substitutions in the catalytic RdRp subunit nsp12. Structural mapping of these mutations suggests that some of them may affect the interactions of nsp12 with its cofactors nsp7/nsp8 as well as with RNA substrates. We have obtained several mutations of these types and demonstrated that some of them decrease specific activity of RdRp in vitro, possibly by changing RdRp assembly and/or its interactions with RNA. Therefore, natural polymorphisms in RdRp may potentially affect viral replication. Furthermore, we have synthesized a series of polyphenol and diketoacid derivatives based on previously studied inhibitors of hepatitis C virus RdRp and found that several of them can inhibit SARS-CoV-2 RdRp. Tested mutations in RdRp do not have strong effects on the efficiency of inhibition. Further development of more efficient non-nucleoside inhibitors of SARS-CoV-2 RdRp should take into account the existence of multiple polymorphic variants of RdRp.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , COVID-19/genética , Proteínas no Estructurales Virales/química , Antivirales/química
12.
FEBS J ; 290(1): 80-92, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35916766

RESUMEN

RNA-dependent RNA polymerase (RdRp) plays a key role in the replication of RNA viruses, including SARS-CoV-2. Processive RNA synthesis by RdRp is crucial for successful genome replication and expression, especially in the case of very long coronaviral genomes. Here, we analysed the activity of SARS-CoV-2 RdRp (the nsp12-nsp7-nsp8 complex) on synthetic primer-templates of various structures, including substrates with mismatched primers or template RNA modifications. It has been shown that RdRp cannot efficiently extend RNA primers containing mismatches and has no intrinsic RNA cleavage activity to remove the primer 3'-end, thus necessitating the action of exoribonuclease for proofreading. Similar to DNA-dependent RNA polymerases, RdRp can perform processive pyrophosphorolysis of the nascent RNA product but this reaction is also blocked in the presence of mismatches. Furthermore, we have demonstrated that several natural post-transcriptional modifications in the RNA template, which do not prevent complementary interactions (N6-methyladenosine, 5-methylcytosine, inosine and pseudouridine), do not change RdRp processivity. At the same time, certain modifications of RNA bases and ribose residues strongly block RNA synthesis, either prior to nucleotide incorporation (3-methyluridine and 1-methylguanosine) or immediately after it (2'-O-methylation). The results demonstrate that the activity of SARS-CoV-2 RdRp can be strongly inhibited by common modifications of the RNA template suggesting a way to design novel antiviral compounds.


Asunto(s)
ARN Viral , ARN Polimerasa Dependiente del ARN , SARS-CoV-2 , Antivirales/farmacología , Antivirales/química , Nucleótidos , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/química , SARS-CoV-2/enzimología , SARS-CoV-2/genética
13.
Nat Commun ; 13(1): 4624, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941106

RESUMEN

Argonaute proteins are programmable nucleases that have defense and regulatory functions in both eukaryotes and prokaryotes. All known prokaryotic Argonautes (pAgos) characterized so far act on DNA targets. Here, we describe a new class of pAgos that uniquely use DNA guides to process RNA targets. The biochemical and structural analysis of Pseudooceanicola lipolyticus pAgo (PliAgo) reveals an unusual organization of the guide binding pocket that does not rely on divalent cations and the canonical set of contacts for 5'-end interactions. Unconventional interactions of PliAgo with the 5'-phosphate of guide DNA define its new position within pAgo and shift the site of target RNA cleavage in comparison with known Argonautes. The specificity for RNA over DNA is defined by ribonucleotide residues at the cleavage site. The analysed pAgos sense mismatches and modifications in the RNA target. The results broaden our understanding of prokaryotic defense systems and extend the spectrum of programmable nucleases with potential use in RNA technology.


Asunto(s)
Proteínas Argonautas , ARN , Proteínas Argonautas/metabolismo , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Endonucleasas/metabolismo , Células Procariotas/metabolismo , ARN/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
15.
Nucleic Acids Res ; 50(11): 6398-6413, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35657103

RESUMEN

The X family polymerases (PolXs) are specialized DNA polymerases that are found in all domains of life. While the main representatives of eukaryotic PolXs, which have dedicated functions in DNA repair, were studied in much detail, the functions and diversity of prokaryotic PolXs have remained largely unexplored. Here, by combining a comprehensive bioinformatic analysis of prokaryotic PolXs and biochemical experiments involving selected recombinant enzymes, we reveal a previously unrecognized group of PolXs that seem to be lacking DNA polymerase activity. The noncanonical PolXs contain substitutions of the key catalytic residues and deletions in their polymerase and dNTP binding sites in the palm and fingers domains, but contain functional nuclease domains, similar to canonical PolXs. We demonstrate that representative noncanonical PolXs from the Deinococcus genus are indeed inactive as DNA polymerases but are highly efficient as 3'-5' exonucleases. We show that both canonical and noncanonical PolXs are often encoded together with the components of the non-homologous end joining pathway and may therefore participate in double-strand break repair, suggesting an evolutionary conservation of this PolX function. This is a remarkable example of polymerases that have lost their main polymerase activity, but retain accessory functions in DNA processing and repair.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Exonucleasas , Células Procariotas/enzimología , Secuencia de Aminoácidos , ADN/metabolismo , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Exonucleasas/genética
16.
J Biol Chem ; 298(7): 102099, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35667439

RESUMEN

Bacterial RNA polymerase (RNAP) coordinates transcription with DNA repair and replication. Many RNAP mutations have pleiotropic phenotypes with profound effects on transcription-coupled processes. One class of RNAP mutations (rpo∗) has been shown to suppress mutations in regulatory factors responsible for changes in gene expression during stationary phase or starvation, as well as in factors involved in the restoration of replication forks after DNA damage. These mutations were suggested to affect the ability of RNAP to transcribe damaged DNA and to decrease the stability of transcription complexes, thus facilitating their dislodging during DNA replication and repair, although this was not explicitly demonstrated. Here, we obtained nine mutations of this class located around the DNA/RNA binding cleft of Escherichia coli RNAP and analyzed their transcription properties in vitro. We found that these mutations decreased promoter complex stability to varying degrees, and all decreased the activity of rRNA promoters. However, they did not have strong effects on elongation complex stability. Some mutations were shown to stimulate transcriptional pauses or decrease intrinsic RNA cleavage by RNAP, but none altered the ability of RNAP to transcribe DNA templates containing damaged nucleotides. Thus, we conclude that the suppressor phenotypes of the mutations are unlikely to result from direct effects on DNA lesion recognition by RNAP but may be primarily explained by changes in transcription initiation. Further analysis of the effects of these mutations on the genomic distribution of RNAP and its interactions with regulatory factors will be essential for understanding their diverse phenotypes in vivo.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Proteínas de Escherichia coli , Escherichia coli , Supresión Genética , Reparación del ADN , Replicación del ADN , ADN Bacteriano/genética , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/genética , Transcripción Genética
17.
Nucleic Acids Res ; 50(6): 3018-3041, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35323981

RESUMEN

Cellular DNA is continuously transcribed into RNA by multisubunit RNA polymerases (RNAPs). The continuity of transcription can be disrupted by DNA lesions that arise from the activities of cellular enzymes, reactions with endogenous and exogenous chemicals or irradiation. Here, we review available data on translesion RNA synthesis by multisubunit RNAPs from various domains of life, define common principles and variations in DNA damage sensing by RNAP, and consider existing controversies in the field of translesion transcription. Depending on the type of DNA lesion, it may be correctly bypassed by RNAP, or lead to transcriptional mutagenesis, or result in transcription stalling. Various lesions can affect the loading of the templating base into the active site of RNAP, or interfere with nucleotide binding and incorporation into RNA, or impair RNAP translocation. Stalled RNAP acts as a sensor of DNA damage during transcription-coupled repair. The outcome of DNA lesion recognition by RNAP depends on the interplay between multiple transcription and repair factors, which can stimulate RNAP bypass or increase RNAP stalling, and plays the central role in maintaining the DNA integrity. Unveiling the mechanisms of translesion transcription in various systems is thus instrumental for understanding molecular pathways underlying gene regulation and genome stability.


Asunto(s)
Daño del ADN , ARN Polimerasas Dirigidas por ADN , Transcripción Genética , ADN/química , ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN/genética
18.
Nucleic Acids Res ; 49(7): 4054-4065, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33744962

RESUMEN

Argonaute proteins are programmable nucleases that are found in both eukaryotes and prokaryotes and provide defense against invading genetic elements. Although some prokaryotic argonautes (pAgos) were shown to recognize RNA targets in vitro, the majority of studied pAgos have strict specificity toward DNA, which limits their practical use in RNA-centric applications. Here, we describe a unique pAgo nuclease, KmAgo, from the mesophilic bacterium Kurthia massiliensis that can be programmed with either DNA or RNA guides and can precisely cleave both DNA and RNA targets. KmAgo binds 16-20 nt long 5'-phosphorylated guide molecules with no strict specificity for their sequence and is active in a wide range of temperatures. In bacterial cells, KmAgo is loaded with small DNAs with no obvious sequence preferences suggesting that it can uniformly target genomic sequences. Mismatches between the guide and target sequences greatly affect the efficiency and precision of target cleavage, depending on the mismatch position and the nature of the reacting nucleic acids. Target RNA cleavage by KmAgo depends on the formation of secondary structure indicating that KmAgo can be used for structural probing of RNA. These properties of KmAgo open the way for its use for highly specific nucleic acid detection and cleavage.


Asunto(s)
Proteínas Argonautas/metabolismo , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Planococcaceae/enzimología , ARN Bacteriano/metabolismo , Unión Proteica , Especificidad por Sustrato
19.
RNA Biol ; 18(11): 2028-2037, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33573428

RESUMEN

The bacterial σ factor plays the central role in promoter recognition by RNA polymerase (RNAP). The primary σ factor, involved in transcription of housekeeping genes, was also shown to participate in the initiation of RNA synthesis and promoter escape by RNAP. In the open promoter complex, the σ finger formed by σ region 3.2 directly interacts with the template DNA strand upstream of the transcription start site. Here, we analysed the role of the σ finger in transcription initiation by four alternative σ factors in Escherichia coli, σ38, σ32, σ28 and σ24. We found that deletions of the σ finger to various extent compromise the activity of RNAP holoenzymes containing alternative σ factors, especially at low NTP concentrations. All four σs are able to utilize NADH as a noncanonical priming substrate but it has only mild effects on the efficiency of transcription initiation. The mediators of the stringent response, transcription factor DksA and the alarmone ppGpp decrease RNAP activity and promoter complex stability for all four σ factors on tested promoters. For all σs except σ38, deletions of the σ finger conversely increase the stability of promoter complexes and decrease their sensitivity to DksA and ppGpp. The result suggests that the σ finger plays a universal role in transcription initiation by alternative σ factors and sensitizes promoter complexes to the action of global transcription regulators DksA and ppGpp by modulating promoter complex stability.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/metabolismo , Factor sigma/metabolismo , Sitio de Iniciación de la Transcripción , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Guanosina Tetrafosfato/genética , Guanosina Tetrafosfato/metabolismo , Regiones Promotoras Genéticas , ARN Bacteriano/genética , Factor sigma/genética , Transcripción Genética
20.
Nat Commun ; 12(1): 528, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33483500

RESUMEN

Ribosomal RNA (rRNA) is most highly expressed in rapidly growing bacteria and is drastically downregulated under stress conditions by the global transcriptional regulator DksA and the alarmone ppGpp. Here, we determined cryo-electron microscopy structures of the Escherichia coli RNA polymerase (RNAP) σ70 holoenzyme during rRNA promoter recognition with and without DksA/ppGpp. RNAP contacts the UP element using dimerized α subunit carboxyl-terminal domains and scrunches the template DNA with the σ finger and ß' lid to select the transcription start site favorable for rapid promoter escape. Promoter binding induces conformational change of σ domain 2 that opens a gate for DNA loading and ejects σ1.1 from the RNAP cleft to facilitate open complex formation. DksA/ppGpp binding also opens the DNA loading gate, which is not coupled to σ1.1 ejection and impedes open complex formation. These results provide a molecular basis for the exceptionally active rRNA transcription and its vulnerability to DksA/ppGpp.


Asunto(s)
Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas/genética , ARN Ribosómico/genética , Transcripción Genética , Microscopía por Crioelectrón , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/ultraestructura , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Tetrafosfato/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , Holoenzimas/ultraestructura , Conformación Proteica , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico/metabolismo , Factor sigma/química , Factor sigma/metabolismo , Factor sigma/ultraestructura , Sitio de Iniciación de la Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...