Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 87(8): 083502, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27587118

RESUMEN

The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 µA-500 µA; the typical current used is 72 µA, which is an average flux of 9 × 10(14) ions/(cm(2) s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

2.
Rev Sci Instrum ; 84(3): 033501, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23556815

RESUMEN

A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage (∼100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(3 Pt 2): 036408, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19905231

RESUMEN

A magnetic deflection-energy analyzer and Faraday trap diagnostic have been used to make measurements of divergent deuterium anion flow in the inertial electrostatic confinement experiment at the University of Wisconsin-Madison (UW-IEC) [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, I. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)], a device to confine high-energy light ions in a spherically symmetric electrostatic potential well. Deuterium anion current densities as high as 8.5 microA/cm2 have been measured at the wall of the UW-IEC device, 40 cm from the surface of the device cathode with a detector assembly of admittance area 0.7 cm2. Energy spectra obtained using a magnetic deflection-energy analyzer diagnostic indicate the presence of D2(-), and D- ions produced through thermal electron attachment near the device cathode, as well as D- ions produced via charge-transfer processes between the anode and cathode of the device.


Asunto(s)
Deuterio/química , Modelos Químicos , Aniones , Simulación por Computador , Electricidad Estática
4.
Science ; 193(4254): 630-3, 1976 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-17755658
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...