Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nature ; 623(7986): 381-386, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37880369

RESUMEN

To maintain a stable and clear image of the world, our eyes reflexively follow the direction in which a visual scene is moving. Such gaze-stabilization mechanisms reduce image blur as we move in the environment. In non-primate mammals, this behaviour is initiated by retinal output neurons called ON-type direction-selective ganglion cells (ON-DSGCs), which detect the direction of image motion and transmit signals to brainstem nuclei that drive compensatory eye movements1. However, ON-DSGCs have not yet been identified in the retina of primates, raising the possibility that this reflex is mediated by cortical visual areas. Here we mined single-cell RNA transcriptomic data from primate retina to identify a candidate ON-DSGC. We then combined two-photon calcium imaging, molecular identification and morphological analysis to reveal a population of ON-DSGCs in the macaque retina. The morphology, molecular signature and GABA (γ-aminobutyric acid)-dependent mechanisms that underlie direction selectivity in primate ON-DSGCs are highly conserved with those in other mammals. We further identify a candidate ON-DSGC in human retina. The presence of ON-DSGCs in primates highlights the need to examine the contribution of subcortical retinal mechanisms to normal and aberrant gaze stabilization in the developing and mature visual system.


Asunto(s)
Movimientos Oculares , Macaca , Retina , Células Ganglionares de la Retina , Animales , Humanos , Movimientos Oculares/fisiología , Estimulación Luminosa , Retina/citología , Retina/fisiología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/fisiología , Movimiento (Física) , Análisis de Expresión Génica de una Sola Célula , Ácido gamma-Aminobutírico/metabolismo , Señalización del Calcio , Fijación Ocular/fisiología
2.
Am J Pathol ; 193(11): 1706-1720, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36328299

RESUMEN

A pathologic feature of late-onset retinal degeneration caused by the S163R mutation in C1q-tumor necrosis factor-5 (C1QTNF5) is the presence of unusually thick deposits between the retinal pigmented epithelium (RPE) and the vascular choroid, considered a hallmark of this disease. Following its specific expression in mouse RPE, the S163R mutant exhibits a reversed polarized distribution relative to the apically secreted wild-type C1QTNF5, and forms widespread, prominent deposits that gradually increase in size with aging. The current study shows that S163R deposits expand to a considerable thickness through a progressive increase in the basolateral RPE membrane, substantially raising the total RPE height, and enabling their clear imaging as a distinct hyporeflective layer by noninvasive optical coherence tomography in advanced age animals. This phenotype bears a striking resemblance to ocular pathology previously documented in patients harboring the S163R mutation. Therefore, a similar viral vector-based gene delivery approach was used to also investigate the behavior of P188T and G216C, two novel pathogenic C1QTNF5 mutants recently reported in patients for which histopathologic data are lacking. Both mutants primarily impacted the RPE/photoreceptor interface and did not generate basal laminar deposits. Distinct distribution patterns and phenotypic consequences of C1QTNF5 mutants were observed in vivo, which suggested that multiple pathobiological mechanisms contribute to RPE dysfunction and vision loss in this disorder.


Asunto(s)
Degeneración Retiniana , Humanos , Ratones , Animales , Degeneración Retiniana/patología , Mutación , Epitelio Pigmentado de la Retina/metabolismo , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...