Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 11(10): 3330-3342, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36194543

RESUMEN

The past decade has seen the emergence of multidrug resistant pathogens as a leading cause of death worldwide, reigniting interest in the field of phage therapy. Modern advances in the genetic engineering of bacteriophages have enabled several useful results including host range alterations, constitutive lytic growth, and control over phage replication. However, the slow licensing process of genetically modified organisms clearly inhibits the rapid therapeutic application of novel engineered variants necessary to fight mutant pathogens that emerge throughout the course of a pandemic. As a solution to this problem, we propose the SpyPhage system where a "scaffold" bacteriophage is engineered to incorporate a SpyTag moiety on its capsid head to enable rapid postsynthetic modification of their surfaces with SpyCatcher-fused therapeutic proteins. As a proof of concept, through CRISPR/Cas-facilitated phage engineering and whole genome assembly, we targeted a SpyTag capsid fusion to K1F, a phage targeting the pathogenic strain Escherichia coli K1. We demonstrate for the first time the cell-free assembly and decoration of the phage surface with two alternative fusion proteins, SpyCatcher-mCherry-EGF and SpyCatcher-mCherry-Rck, both of which facilitate the endocytotic uptake of the phages by a urinary bladder epithelial cell line. Overall, our work presents a cell-free phage production pipeline for the generation of multiple phenotypically distinct phages with a single underlying "scaffold" genotype. These phages could become the basis of next-generation phage therapies where the knowledge-based engineering of numerous phage variants would be quickly achievable without the use of live bacteria or the need to repeatedly license novel genetic alterations.


Asunto(s)
Bacteriófagos , Terapia de Fagos , Factor de Crecimiento Epidérmico/genética , Bacteriófagos/genética , Ingeniería Genética , Escherichia coli/genética
2.
ACS Synth Biol ; 11(5): 1931-1948, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35544754

RESUMEN

Nucleic acids are a powerful engineering material that can be used to implement a broad range of computational circuits at the nanoscale, with potential applications in high-precision biosensing, diagnostics, and therapeutics. However, nucleic acid circuits are prone to leaks, which result from unintended displacement interactions between nucleic acid strands. Such leaks can grow combinatorially with circuit size, are challenging to mitigate, and can significantly compromise circuit behavior. While several techniques have been proposed to partially mitigate leaks, computational methods for designing new leak mitigation strategies and comparing their effectiveness on circuit behavior are limited. Here we present a general method for the automated leak analysis of nucleic acid circuits, referred to as DSD Leaks. Our method extends the logic programming functionality of the Visual DSD language, developed for the design and analysis of nucleic acid circuits, with predicates for leak generation, a leak reaction enumeration algorithm, and predicates to exclude low probability leak reactions. We use our method to identify the critical leak reactions affecting the performance of control circuits, and to analyze leak mitigation strategies by automatically generating leak reactions. Finally, we design new control circuits with substantially reduced leakage including a sophisticated proportional-integral controller circuit, which can in turn serve as building blocks for future circuits. By integrating our method within an open-source nucleic acid circuit design tool, we enable the leak analysis of a broad range of circuits, as an important step toward facilitating robust and scalable nucleic acid circuit design.


Asunto(s)
Ácidos Nucleicos , ADN
3.
J Integr Bioinform ; 18(3)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34098590

RESUMEN

People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.3 of SBOL Visual, which builds on the prior SBOL Visual 2.2 in several ways. First, the specification now includes higher-level "interactions with interactions," such as an inducer molecule stimulating a repression interaction. Second, binding with a nucleic acid backbone can be shown by overlapping glyphs, as with other molecular complexes. Finally, a new "unspecified interaction" glyph is added for visualizing interactions whose nature is unknown, the "insulator" glyph is deprecated in favor of a new "inert DNA spacer" glyph, and the polypeptide region glyph is recommended for showing 2A sequences.


Asunto(s)
Lenguajes de Programación , Biología Sintética , Humanos , Lenguaje
4.
J Integr Bioinform ; 17(2-3)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32543457

RESUMEN

People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.2 of SBOL Visual, which builds on the prior SBOL Visual 2.1 in several ways. First, the grounding of molecular species glyphs is changed from BioPAX to SBO, aligning with the use of SBO terms for interaction glyphs. Second, new glyphs are added for proteins, introns, and polypeptide regions (e. g., protein domains), the prior recommended macromolecule glyph is deprecated in favor of its alternative, and small polygons are introduced as alternative glyphs for simple chemicals.


Asunto(s)
Lenguajes de Programación , Biología Sintética , Humanos , Lenguaje
5.
J Integr Bioinform ; 17(2-3)2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32589605

RESUMEN

Synthetic biology builds upon genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. When designing a synthetic system, synthetic biologists need to exchange information about multiple types of molecules, the intended behavior of the system, and actual experimental measurements. The Synthetic Biology Open Language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, following an open community process involving both wet bench scientists and dry scientific modelers and software developers, across academia, industry, and other institutions. This document describes SBOL 3.0.0, which condenses and simplifies previous versions of SBOL based on experiences in deployment across a variety of scientific and industrial settings. In particular, SBOL 3.0.0, (1) separates sequence features from part/sub-part relationships, (2) renames Component Definition/Component to Component/Sub-Component, (3) merges Component and Module classes, (4) ensures consistency between data model and ontology terms, (5) extends the means to define and reference Sub-Components, (6) refines requirements on object URIs, (7) enables graph-based serialization, (8) moves Systems Biology Ontology (SBO) for Component types, (9) makes all sequence associations explicit, (10) makes interfaces explicit, (11) generalizes Sequence Constraints into a general structural Constraint class, and (12) expands the set of allowed constraints.


Asunto(s)
Lenguajes de Programación , Biología Sintética , Lenguaje , Modelos Biológicos , Programas Informáticos
6.
Artículo en Inglés | MEDLINE | ID: mdl-31681738

RESUMEN

Cell-free protein synthesis (CFPS) system is a simple, rapid, and sensitive tool that is devoid of membrane-bound barriers, yet contains all the mandatory substrates, biomolecules, and machineries required for the synthesis of the desired proteins. It has the potential to overcome loopholes in the current in vivo production systems and is a promising tool in both basic and applied scientific research. It facilitates a simplified organization of desired experiments with a variety of reaction conditions, making CFPS a powerful tool in biological research. It has been used for the expansion of genetic code, assembly of viruses, and in metabolic engineering for production of toxic and complex proteins. Subsequently, CFPS systems have emerged as potent technology for high-throughput production of membrane proteins, enzymes, and therapeutics. The present review highlights the recent advances and uses of CFPS systems in biomedical, therapeutic, and biotechnological applications. Additionally, we highlight possible solutions to the potential biosafety issues that may be encountered while using CFPS technology.

7.
IEEE Trans Nanobioscience ; 15(5): 443-454, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27164599

RESUMEN

We show how an important class of nonlinear feedback controllers can be designed using idealized abstract chemical reactions and implemented via DNA strand displacement (DSD) reactions. Exploiting chemical reaction networks (CRNs) as a programming language for the design of complex circuits and networks, we show how a set of unimolecular and bimolecular reactions can be used to realize input-output dynamics that produce a nonlinear quasi sliding mode (QSM) feedback controller. The kinetics of the required chemical reactions can then be implemented as enzyme-free, enthalpy/entropy driven DNA reactions using a toehold mediated strand displacement mechanism via Watson-Crick base pairing and branch migration. We demonstrate that the closed loop response of the nonlinear QSM controller outperforms a traditional linear controller by facilitating much faster tracking response dynamics without introducing overshoots in the transient response. The resulting controller is highly modular and is less affected by retroactivity effects than standard linear designs.


Asunto(s)
Computadores Moleculares , ADN/química , Retroalimentación , Dinámicas no Lineales , Biología Sintética
8.
Proteomics ; 16(8): 1297-308, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27089056

RESUMEN

The complexity involving protein array technology reflects in the fact that instrumentation and data analysis are subject to change depending on the biological question, technical compatibility of instruments and software used in each experiment. Industry has played a pivotal role in establishing standards for future deliberations in sustenance of these technologies in the form of protein array chips, arrayers, scanning devices, and data analysis software. This has enhanced the outreach of protein microarray technology to researchers across the globe. These have encouraged a surge in the adaptation of "nonclassical" approaches such as DNA-based protein arrays, micro-contact printing, label-free protein detection, and algorithms for data analysis. This review provides a unique overview of these industrial solutions available for protein microarray based studies. It aims at assessing the developments in various commercial platforms, thus providing a holistic overview of various modalities, options, and compatibility; summarizing the journey of this powerful high-throughput technology.


Asunto(s)
Industrias/métodos , Invenciones , Análisis por Matrices de Proteínas/métodos , Programas Informáticos , Difusión de Innovaciones , Genómica/instrumentación , Genómica/métodos , Humanos , Análisis por Matrices de Proteínas/instrumentación , Unión Proteica , Proteómica/instrumentación , Proteómica/métodos , Reproducibilidad de los Resultados
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 1455-1458, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28268600

RESUMEN

The use of abstract chemical reaction networks (CRNs) as a modelling and design framework for the implementation of computing and control circuits using enzyme-free, entropy driven DNA strand displacement (DSD) reactions is starting to garner widespread attention in the area of synthetic biology. Previous work in this area has demonstrated the theoretical plausibility of using this approach to design biomolecular feedback control systems based on classical proportional-integral (PI) controllers, which may be constructed from CRNs implementing gain, summation and integrator operators. Here, we propose an alternative design approach that utilises the abstract chemical reactions involved in cellular signalling cycles to implement a biomolecular controller - termed a signalling-cycle (SC) controller. We compare the performance of the PI and SC controllers in closed-loop with a nonlinear second-order chemical process. Our results show that the SC controller outperforms the PI controller in terms of both performance and robustness, and also requires fewer abstract chemical reactions to implement, highlighting its potential usefulness in the construction of biomolecular control circuits.


Asunto(s)
ADN/genética , Retroalimentación , Biología Sintética
10.
BMC Emerg Med ; 15: 13, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26130247

RESUMEN

BACKGROUND: Treatment with oral carbohydrate prior to trauma and hemorrhage confers a survival benefit in small animal models. The impact of fed states on survival in traumatically injured humans is unknown. This work uses regulatory networks to examine the effect of carbohydrate pre-feeding on metabolic response to polytrauma and hemorrhagic shock in a clinically-relevant large animal model. METHODS: Male Yorkshire pigs were fasted overnight (n = 64). Pre-fed animals (n = 32) received an oral bolus of Karo\textregistered\syrup before sedation. All animals underwent a standardized trauma, hemorrhage, and resuscitation protocol. Serum samples were obtained at set timepoints. Proton NMR was used to identify and quantify serum metabolites. Metabolic regulatory networks were constructed from metabolite concentrations and rates of change in those concentrations to identify controlled nodes and controlling nodes of the network. RESULTS: Oral carbohydrate pre-treatment was not associated with survival benefit. Six metabolites were identified as controlled nodes in both groups: adenosine, cytidine, glycerol, hypoxanthine, lactate, and uridine. Distinct groups of controlling nodes were associated with controlled nodes; however, the composition of these groups depended on feeding status. CONCLUSIONS: A common metabolic output, typically associated with injury and hypoxia, results from trauma and hemorrhagic shock. However, this output is directed by different metabolic inputs depending upon the feeding status of the subject. Nodes of the network that are related to mortality can potentially be manipulated for therapeutic effect; however, these nodes differ depending upon feeding status.


Asunto(s)
Biomarcadores/sangre , Carbohidratos de la Dieta , Conducta Alimentaria , Metaboloma , Traumatismo Múltiple/metabolismo , Choque Hemorrágico/metabolismo , Animales , Masculino , Redes y Vías Metabólicas , Traumatismo Múltiple/mortalidad , Estrés Oxidativo , Distribución Aleatoria , Choque Hemorrágico/mortalidad , Porcinos
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 949-52, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26736420

RESUMEN

A fundamental aim of synthetic biology is to achieve the capability to design and implement robust embedded biomolecular feedback control circuits. An approach to realize this objective is to use abstract chemical reaction networks (CRNs) as a programming language for the design of complex circuits and networks. Here, we employ this approach to facilitate the implementation of a class of nonlinear feedback controllers based on sliding mode control theory. We show how a set of two-step irreversible reactions with ultrasensitive response dynamics can provide a biomolecular implementation of a nonlinear quasi sliding mode (QSM) controller. We implement our controller in closed-loop with a prototype of a biological pathway and demonstrate that the nonlinear QSM controller outperforms a traditional linear controller by facilitating faster tracking response dynamics without introducing overshoots in the transient response.


Asunto(s)
ADN/química , Algoritmos , Simulación por Computador , Retroalimentación , Dinámicas no Lineales , Biología Sintética
12.
ACS Synth Biol ; 3(8): 600-16, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25061797

RESUMEN

The design of synthetic circuits for controlling molecular-scale processes is an important goal of synthetic biology, with potential applications in future in vitro and in vivo biotechnology. In this paper, we present a computational approach for designing feedback control circuits constructed from nucleic acids. Our approach relies on an existing methodology for expressing signal processing and control circuits as biomolecular reactions. We first extend the methodology so that circuits can be expressed using just two classes of reactions: catalysis and annihilation. We then propose implementations of these reactions in three distinct classes of nucleic acid circuits, which rely on DNA strand displacement, DNA enzyme and RNA enzyme mechanisms, respectively. We use these implementations to design a Proportional Integral controller, capable of regulating the output of a system according to a given reference signal, and discuss the trade-offs between the different approaches. As a proof of principle, we implement our methodology as an extension to a DNA strand displacement software tool, thus allowing a broad range of nucleic acid circuits to be designed and analyzed within a common modeling framework.


Asunto(s)
ADN , Ácidos Nucleicos , Programas Informáticos , Biología Sintética/métodos , Catálisis , Computadores Moleculares , ADN/genética , ADN/metabolismo , Enzimas/química , Enzimas/metabolismo , Modelos Teóricos , ARN/genética , ARN/metabolismo
13.
ACS Synth Biol ; 3(8): 617-26, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24946099

RESUMEN

Synthetic biology is facilitating novel methods and components to build in vivo and in vitro circuits to better understand and re-engineer biological networks. Recently, Kim and Winfree have synthesized a remarkably elegant network of transcriptional oscillators in vitro using a modular architecture of synthetic gene analogues and a few enzymes that, in turn, could be used to drive a variety of downstream circuits and nanodevices. However, these oscillators are sensitive to initial conditions and downstream load processes. Furthermore, the oscillations are not sustained since the inherently closed design suffers from enzyme deactivation, NTP fuel exhaustion, and waste product build up. In this paper, we show that a partially open architecture in which an [Symbol: see text]1 adaptive controller, implemented inside an in silico computer that resides outside the wet-lab apparatus, can ensure sustained tunable oscillations in two specific designs of the Kim-Winfree oscillator networks. We consider two broad cases of operation: (1) the oscillator network operating in isolation and (2) the oscillator network driving a DNA tweezer subject to a variable load. In both scenarios, our simulation results show a significant improvement in the tunability and robustness of these oscillator networks. Our approach can be easily adopted to improve the loading capacity of a wide range of synthetic biological devices.


Asunto(s)
Retroalimentación Fisiológica , Modelos Teóricos , Ácidos Nucleicos , Biología Sintética/métodos , Simulación por Computador , Computadores Moleculares , Enzimas/química , Enzimas/metabolismo , Genes Sintéticos , Modelos Genéticos
14.
Syst Synth Biol ; 6(3-4): 69-77, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24294341

RESUMEN

Building on the linear matrix inequality (LMI) formulation developed recently by Zavlanos et al. (Automatica: Special Issue Syst Biol 47(6):1113-1122, 2011), we present a theoretical framework and algorithms to derive a class of ordinary differential equation (ODE) models of gene regulatory networks using literature curated data and microarray data. The solution proposed by Zavlanos et al. (Automatica: Special Issue Syst Biol 47(6):1113-1122, 2011) requires that the microarray data be obtained as the outcome of a series of controlled experiments in which the network is perturbed by over-expressing one gene at a time. We note that this constraint may be relaxed for some applications and, in addition, demonstrate how the conservatism in these algorithms may be reduced by using the Perron-Frobenius diagonal dominance conditions as the stability constraints. Due to the LMI formulation, it follows that the bounded real lemma may easily be used to make use of additional information. We present case studies that illustrate how these algorithms can be used on datasets to derive ODE models of the underlying regulatory networks.

15.
Syst Synth Biol ; 5(3-4): 97-104, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23205153

RESUMEN

Genetic regulatory networks respond dynamically to perturbations in the intracellular and extracellular environments of an organism. The GAL system in the yeast Saccharomyces cerevisiae has evolved to utilize galactose as an alternative carbon and energy source, in the absence of glucose in the environment. We present a dynamic model for GAL system in Saccharomyces cerevisiae, which includes a novel mechanism for Gal3p activation upon induction with galactose. The modification enables the model to simulate the experimental observation that in absence of galactose, oversynthesis of Gal3p can also induce the GAL system. We then characterize the memory of the GAL system as the domain of attraction of the steady states.

16.
BMC Bioinformatics ; 11 Suppl 1: S43, 2010 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-20122217

RESUMEN

BACKGROUND: In the yeast Saccharomyces cerevisiae, interactions between galactose, Gal3p, Gal80p, and Gal4p determine the transcriptional status of the genes required for the galactose utilization. Increase in the cellular galactose concentration causes the galactose molecules to bind onto Gal3p which, via Gal80p, activates Gal4p, which induces the GAL3 and GAL80 gene transcription. Recently, a linear time-invariant multi-input multi-output (MIMO) model of this GAL regulatory network has been proposed; the inputs being galactose and Gal4p, and the outputs being the active Gal4p and galactose utilization. Unfortunately, this model assumes the cell culture to be homogeneous, although it is not so in practice. We overcome this drawback by including more biochemical reactions, and derive a quadratic ordinary differential equation (ODE) based model. RESULTS: We show that the model, referred to above, does not exhibit bistability. We establish sufficiency conditions for the domain of attraction of an equilibrium point of our ODE model for the special case of full-state feedback controller. We observe that the GAL regulatory system of Kluyveromyces lactis exhibits an aberration of monotone nonlinearity and apply the Rantzer multipliers to establish a class of stabilizing controllers for this system. CONCLUSION: Feedback in a GAL regulatory system can be used to enhance the cellular memory. We show that the system can be modeled as a quadratic nonlinear system for which the effect of feedback on the domain of attraction of the equilibrium point can be characterized using linear matrix inequality (LMI) conditions that are easily implementable in software. The benefit of this result is that a mathematically sound approach to the synthesis of full-state and partial-state feedback controllers to regulate the cellular memory is now possible, irrespective of the number of state-variables or parameters of interest.


Asunto(s)
Biología Computacional/métodos , Galactosa/metabolismo , Kluyveromyces/genética , Saccharomyces cerevisiae/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Kluyveromyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
17.
Syst Synth Biol ; 4(4): 331-41, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22132060

RESUMEN

Mitogen activated protein kinase (MAPK) cascade is evolutionally preserved in all eukaryotic cells, and regulates various cellular activities such as gene expression, mitosis, differentiation, and apoptosis. Recently, Bashor et al. have shown that Ste5 scaffold protein can be used to reshape the MAPK cascade through engineered feedback loops, and have used heuristic tuning mechanisms to synthesize the feedback. A problem of interest is to determine whether information regarding the underlying biochemical reactions can be used to synthesize robust feedback that will ensure that the resultant circuit has the desired properties. In this paper, we consider the problem of engineering feedback in MAPK cascade to synthesize an oscillator of the desired frequency. Our approach builds on the MAPK cascade model derived by Chikarmane et al. who have exploited the existence of a Hopf bifurcation point in the Markevich model of the MAPK cascade to synthesize the exciting kinase as a function of the doubly phosphorylated protein. We show how the [Formula: see text]-control theory can be used for a robust synthesis of the oscillator and present the simulation results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...