Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; : e0277423, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37707289

RESUMEN

Chlamydia trachomatis infection can be regulated by autophagy-related (ATG) genes. Here, we found that the depletion of ATG9A, one of the core ATG genes, in HeLa cells suppressed C. trachomatis growth in the inclusion. The growth was restored by re-expressing ATG9A or an ATG9A mutant impairing lipid scramblase activity in ATG9A-knockout (KO) cells. Moreover, the depletion of lipid transfer proteins ATG2A/B, responsible for isolation membrane expansion together with ATG9A, did not significantly alter the growth, suggesting that the non-autophagic function of ATG9A supports C. trachomatis infection. ATG9A-KO cells showed no infection-induced redistribution of the Golgi from the perinuclear region to inclusion, which was restored by re-expressing the mutant but not the ATG9A mutant lacking an N-terminal adapter protein-binding domain. Re-expression of the N-terminal deletion mutant in ATG9A-KO cells did not rescue C. trachomatis growth, suggesting the importance of this domain for its growth. Although ATG9A-KO cells showed enhanced TBK1 activation, interferon (IFN)-ß was not significantly increased, excluding the possibility that upregulation of stimulator of IFN genes (STING) signaling suppressed bacterial growth. Taken together, these findings suggest that the proper trafficking, rather than the isolation membrane expansion function, of ATG9A assists C. trachomatis growth in the inclusion. IMPORTANCE ATG9A is an autophagy-related gene that functions during the isolation membrane expansion process to form autophagosomes, but it also has other functions independent of autophagy. In this study, we employed ATG9A-deficient HeLa cells and found that the absence of ATG9A negatively impacted proliferation of Chlamydia trachomatis in inclusions. Furthermore, rescue experiments using ATG9A mutants revealed that this action was mediated not by its autophagic function but by its binding ability to clathrin adapter proteins. These findings suggest that the proper trafficking of ATG9A assists C. trachomatis growth in the inclusion.

2.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36499025

RESUMEN

The obligate intracellular bacterium Chlamydia trachomatis is the major causative agent of bacterial sexually transmitted diseases worldwide. In infected cells, the ceramide transport protein (CERT) is recruited to inclusions, where C. trachomatis replicates using host-synthesized ceramide. The ceramide is converted to sphingomyelin (SM) by a chlamydial infection-dependent SM synthesis (cidSM-synthesis) pathway, which occurs even in the absence of the SM synthases (SMS)-1 and -2 of host cells. The ceramide mimetic compound (1R,3S)-HPA-12 and the nonmimetic compound E16A, both of which are potent inhibitors of CERT, repressed the proliferation of C. trachomatis in HeLa cells. Unexpectedly, (1R,3R)-HPA-12, a ceramide mimetic compound that lacks CERT inhibitory activity, also exhibited potent anti-chlamydial activity. Using endogenous SMS-knockout mutant HeLa cells, we revealed that (1R,3R)-HPA-12 mildly inhibited cidSM-synthesis. In addition, LC-MS analysis revealed that (1R,3R)-HPA-12 is converted to a phosphocholine-conjugated metabolite in an infection-dependent manner. Imaging analysis with a fluorescent analog of ceramide suggested that cidSM-synthesis occurs in the bacterial bodies and/or inclusions. Collectively, these results suggested that (1R,3R)-HPA-12 exerts its anti-chlamydia activity not only as an inhibitor of cidSM-synthesis, but also via putative toxic effects of its phosphocholine adduct, which is most likely produced by the cidSM-synthesis route.


Asunto(s)
Ceramidas , Esfingomielinas , Humanos , Esfingomielinas/metabolismo , Ceramidas/farmacología , Ceramidas/metabolismo , Células HeLa , Fosforilcolina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Chlamydia trachomatis/metabolismo
3.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35955719

RESUMEN

Ceramide transport protein (CERT) mediates ceramide transfer from the endoplasmic reticulum to the Golgi for sphingomyelin (SM) biosynthesis. CERT is inactivated by multiple phosphorylation at the serine-repeat motif (SRM), and mutations that impair the SRM phosphorylation are associated with a group of inherited intellectual disorders in humans. It has been suggested that the N-terminal phosphatidylinositol 4-monophosphate [PtdIns(4)P] binding domain and the C-terminal ceramide-transfer domain of CERT physically interfere with each other in the SRM phosphorylated state, thereby repressing the function of CERT; however, it remains unclear which regions in CERT are involved in the SRM phosphorylation-dependent repression of CERT. Here, we identified a previously uncharacterized cluster of lysine/arginine residues that were predicted to be located on the outer surface of a probable coiled-coil fold in CERT. Substitutions of the basic amino acids in the cluster with alanine released the SRM-dependent repression of CERT activities, i.e., the synthesis of SM, PtdIns(4)P-binding, vesicle-associated membrane protein-associated protein (VAP) binding, ceramide-transfer activity, and localization to the Golgi, although the effect on SM synthesis activity was only partially compromised by the alanine substitutions, which moderately destabilized the trimeric status of CERT. These results suggest that the basic amino acid cluster in the coiled-coil region is involved in the regulation of CERT function.


Asunto(s)
Proteínas Portadoras , Ceramidas , Alanina/metabolismo , Aminoácidos Básicos/metabolismo , Transporte Biológico/fisiología , Proteínas Portadoras/metabolismo , Ceramidas/metabolismo , Aparato de Golgi/metabolismo , Humanos , Fosfatidilinositoles/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas , Serina/metabolismo
4.
Int J Mol Sci ; 23(7)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35409383

RESUMEN

The ceramide transport protein (CERT) delivers ceramide from the endoplasmic reticulum (ER) to the Golgi apparatus, where ceramide is converted to sphingomyelin (SM). The function of CERT is regulated in two distinct phosphorylation-dependent events: multiple phosphorylations in a serine-repeat motif (SRM) and phosphorylation of serine 315 residue (S315). Pharmacological inhibition of SM biosynthesis results in an increase in SRM-dephosphorylated CERT, which serves as an activated form, and an enhanced phosphorylation of S315, which augments the binding of CERT to ER-resident VAMP-associated protein (VAP), inducing the full activation of CERT to operate at the ER-Golgi membrane contact sites (MCSs). However, it remains unclear whether the two phosphorylation-dependent regulatory events always occur coordinately. Here, we describe that hyperosmotic stress induces S315 phosphorylation without affecting the SRM-phosphorylation state. Under hyperosmotic conditions, the binding of CERT with VAP-A is enhanced in an S315 phosphorylation-dependent manner, and this increased binding occurs throughout the ER rather than restrictedly at the ER-Golgi MCSs. Moreover, we found that de novo synthesis of SM with very-long acyl chains preferentially increases via a CERT-independent mechanism under hyperosmotic-stressed cells, providing an insight into a CERT-independent ceramide transport pathway for de novo synthesis of SM.


Asunto(s)
Proteínas Portadoras , Ceramidas , Transporte Biológico , Proteínas Portadoras/metabolismo , Ceramidas/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas , Serina/metabolismo , Esfingomielinas/metabolismo
5.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35216212

RESUMEN

Lipid transfer proteins (LTPs) are recognized as key players in the inter-organelle trafficking of lipids and are rapidly gaining attention as a novel molecular target for medicinal products. In mammalian cells, ceramide is newly synthesized in the endoplasmic reticulum (ER) and converted to sphingomyelin in the trans-Golgi regions. The ceramide transport protein CERT, a typical LTP, mediates the ER-to-Golgi transport of ceramide at an ER-distal Golgi membrane contact zone. About 20 years ago, a potent inhibitor of CERT, named (1R,3S)-HPA-12, was found by coincidence among ceramide analogs. Since then, various ceramide-resembling compounds have been found to act as CERT inhibitors. Nevertheless, the inevitable issue remains that natural ligand-mimetic compounds might directly bind both to the desired target and to various undesired targets that share the same natural ligand. To resolve this issue, a ceramide-unrelated compound named E16A, or (1S,2R)-HPCB-5, that potently inhibits the function of CERT has recently been developed, employing a series of in silico docking simulations, efficient chemical synthesis, quantitative affinity analysis, protein-ligand co-crystallography, and various in vivo assays. (1R,3S)-HPA-12 and E16A together provide a robust tool to discriminate on-target effects on CERT from off-target effects. This short review article will describe the history of the development of (1R,3S)-HPA-12 and E16A, summarize other CERT inhibitors, and discuss their possible applications.


Asunto(s)
Transporte Biológico/fisiología , Ceramidas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Ligandos
6.
J Virol ; 94(23)2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32938759

RESUMEN

Some plus-stranded RNA viruses generate double-membrane vesicles (DMVs), one type of the membrane replication factories, as replication sites. Little is known about the lipid components involved in the biogenesis of these vesicles. Sphingomyelin (SM) is required for hepatitis C virus (HCV) replication, but the mechanism of SM involvement remains poorly understood. SM biosynthesis starts in the endoplasmic reticulum (ER) and gives rise to ceramide, which is transported from the ER to the Golgi by the action of ceramide transfer protein (CERT), where it can be converted to SM. In this study, inhibition of SM biosynthesis, either by using small-molecule inhibitors or by knockout (KO) of CERT, suppressed HCV replication in a genotype-independent manner. This reduction in HCV replication was rescued by exogenous SM or ectopic expression of the CERT protein, but not by ectopic expression of nonfunctional CERT mutants. Observing low numbers of DMVs in stable replicon cells treated with a SM biosynthesis inhibitor or in CERT-KO cells transfected with either HCV replicon or with constructs that drive HCV protein production in a replication-independent system indicated the significant importance of SM to DMVs. The degradation of SM of the in vitro-isolated DMVs affected their morphology and increased the vulnerability of HCV RNA and proteins to RNase and protease treatment, respectively. Poliovirus, known to induce DMVs, showed decreased replication in CERT-KO cells, while dengue virus, known to induce invaginated vesicles, did not. In conclusion, these findings indicated that SM is an essential constituent of DMVs generated by some plus-stranded RNA viruses.IMPORTANCE Previous reports assumed that sphingomyelin (SM) is essential for HCV replication, but the mechanism was unclear. In this study, we showed for the first time that SM and ceramide transfer protein (CERT), which is in the SM biosynthesis pathway, are essential for the biosynthesis of double-membrane vesicles (DMVs), the sites of viral replication. Low numbers of DMVs were observed in CERT-KO cells transfected with replicon RNA or with constructs that drive HCV protein production in a replication-independent system. HCV replication was rescued by ectopic expression of the CERT protein, but not by CERT mutants, that abolishes the binding of CERT to vesicle-associated membrane protein-associated protein (VAP) or phosphatidylinositol 4-phosphate (PI4P), indicating new roles for VAP and PI4P in HCV replication. The biosynthesis of DMVs has great importance to replication by a variety of plus-stranded RNA viruses. Understanding of this process is expected to facilitate the development of diagnosis and antivirus.


Asunto(s)
Proteínas Portadoras/metabolismo , Hepacivirus/metabolismo , Esfingomielinas/metabolismo , Replicación Viral/fisiología , Transporte Biológico , Proteínas Portadoras/genética , Línea Celular , Ceramidas , Retículo Endoplásmico/metabolismo , Técnicas de Inactivación de Genes , Aparato de Golgi/metabolismo , Células HEK293 , Hepatitis C/virología , Humanos , Fosfatos de Fosfatidilinositol , ARN Viral/genética
7.
FEBS Lett ; 594(3): 519-529, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31596951

RESUMEN

The obligate intracellular bacterium Chlamydia trachomatis proliferates in the membranous compartment inclusion formed in host cells. The host ceramide transport protein CERT delivers ceramide from the endoplasmic reticulum to the Golgi complex for the synthesis of sphingomyelin (SM). Chlamydia trachomatis has been suggested to employ CERT to produce SM in the inclusion by host SM synthases (SMSs). Here, we found that C. trachomatis proliferates and produces infective progeny even in SMS1 and SMS2 double-knockout HeLa cells, but not in the SMS1/SMS2/CERT triple-knockout cells. Interestingly, infected cells convert ceramide to SM without host SMSs. These results suggest that C. trachomatis-infected cells can convert ceramide to SM without host SMSs after CERT-mediated transfer of ceramide to the inclusions.


Asunto(s)
Ceramidas/metabolismo , Chlamydia trachomatis/fisiología , Esfingomielinas/metabolismo , Secuencia de Bases , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Transferasas (Grupos de Otros Fosfatos Sustitutos)/deficiencia , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
8.
FEBS Lett ; 593(17): 2366-2377, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31254361

RESUMEN

The inter-organelle transport of lipids must be regulated to ensure appropriate lipid composition of each organelle. In mammalian cells, ceramide synthesised in the endoplasmic reticulum (ER) is transported to the trans-Golgi regions, where ceramide is converted to sphingomyelin (SM) with the concomitant production of diacylglycerol. Ceramide transport protein (CERT) transports ceramide from the ER to the trans-Golgi regions at the ER-Golgi membrane contact sites (MCS). The function of CERT is down-regulated by multisite phosphorylation of a serine-repeat motif (SRM) and up-regulated by phosphorylation of serine 315 in CERT. Multisite phosphorylation of the SRM is primed by protein kinase D, which is activated by diacylglycerol. The function of CERT is regulated by a phosphorylation-dependent feedback mechanism in response to cellular requirements of SM. CERT-dependent ceramide transport is also affected by the pool of phosphatidylinositol (PtdIns)-4-phosphate (PtdIns(4)P) in the trans-Golgi regions, while the PtdIns(4)P pool is regulated by PtdIns-4-kinases and oxysterol-binding protein. The ER-Golgi MCS may serve as inter-organelle communication zones, in which many factors work in concert to serve as an extensive rheostat of SM, diacylglycerol, cholesterol and PtdIns(4)P.


Asunto(s)
Ceramidas/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Transporte Biológico , Humanos
9.
Biochem Biophys Res Commun ; 505(4): 1070-1076, 2018 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-30314703

RESUMEN

Chlamydia trachomatis is an obligate intracellular bacterium that replicates within a membranous compartment, the inclusion, in host cells. Its intracellular life cycle requires host sphingolipids, which are in part acquired through the ER-Golgi localized ceramide transport protein (CERT). The Chlamydia-encoded inclusion membrane protein IncD is composed of two closely linked long hydrophobic domains with their N- and C-termini exposed to the host cytosol. IncD binds directly to the pleckstrin homology (PH) domain of CERT, likely redirecting ceramide to the inclusion. The precise regions of IncD required for this interaction have not been delineated. Using co-transfection studies together with phylogenetic studies, we demonstrate that both the IncD N- and C-terminal regions are required for binding to the CERT PH domain and define key interaction residues. Native gel electrophoresis analysis demonstrates that the transmembrane region of IncD forms SDS-resistant but dithiothreitol-sensitive homodimers, which in turn can assemble to form higher order oligomers through additional N- and C-terminal domain contacts. IncD oligomerization may facilitate high affinity binding to CERT, allowing C. trachomatis to efficiently redirect host ceramide to the inclusion.


Asunto(s)
Proteínas Bacterianas/química , Chlamydia trachomatis/química , Proteínas Serina-Treonina Quinasas/química , Proteínas Bacterianas/metabolismo , Chlamydia trachomatis/metabolismo , Humanos , Dominios Homólogos a Pleckstrina , Proteínas Serina-Treonina Quinasas/metabolismo
10.
J Biol Chem ; 293(28): 11206-11217, 2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29848549

RESUMEN

Sphingolipids such as ceramide are important constituents of cell membranes. The ceramide transfer protein (CERT) moves ceramide from the endoplasmic reticulum to the Golgi apparatus in a nonvesicular manner. Hyperphosphorylation of the serine-repeat motif (SRM) adjacent to the pleckstrin homology (PH) domain of CERT down-regulates the inter-organelle ceramide transport function of CERT. However, the mechanistic details of this down-regulation remain elusive. Using solution NMR and binding assays, we herein show that a hyperphosphorylation-mimetic CERT variant in which 10 serine/threonine residues of SRM had been replaced with glutamate residues (the 10E variant) displays an intramolecular interaction between SRM and positively charged regions of the PH domain, which are involved in the binding of this domain to phosphatidylinositol 4-monophosphate (PI4P). Of note, the binding of the PH domain to PI4P-embedded membranes was attenuated by the SRM 10E substitutions in cell-free assays. Moreover, the 10E substitutions reduced the Golgi-targeting activity of the PH-SRM construct in living cells. These results indicate that hyperphosphorylated SRM directly interacts with the surface of the PH domain in an intramolecular manner, thereby decreasing the PI4P-binding activity of the PH domain. In light of these findings, we propose that the hyperphosphorylation of SRM may trigger the dissociation of CERT from the Golgi apparatus, resulting in a functionally less active conformation of CERT.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Membrana Celular/metabolismo , Ceramidas/metabolismo , Fosfatidilinositoles/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Secuencia de Bases , Transporte Biológico , Proteínas Sanguíneas/química , Membrana Celular/química , Ceramidas/química , Cristalografía por Rayos X , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Fosfatidilinositoles/química , Fosfoproteínas/química , Fosforilación , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Serina/química
11.
Bone ; 111: 101-108, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29551750

RESUMEN

Various substitution mutations in ALK2, a transmembrane serine/threonine kinase receptor for bone morphogenetic proteins (BMPs), have been identified in patients with genetic disorders such as fibrodysplasia ossificans progressiva (FOP), diffuse intrinsic pontine glioma (DIPG) and heart defects. In this study, we characterized the ALK2 mutants R258G, G328V and F246Y, which were identified in patients with severe FOP, DIPG and unusual hereditary skeletal dysplasia, respectively. Both R258G and G328V were gain-of-function mutations, but F246Y was equivalent to wild-type ALK2. We also examined the effect of the suppressor FKBP12 on the signal transduction of a further 14 ALK2 mutations associated with FOP and/or DIPG. To varying extents FKBP12 over-expression suppressed the basal signaling induced by thirteen of the ALK2 mutants, whereas PF197-8L was uniquely resistant. In the PF197-8L mutant, the modelled ALK2 residue L197 induced a steric clash with the D36 residue in FKBP12 and dissociated their interaction. The co-expression of BMP type II receptors or stimulation with ligands relieved the suppression by FKBP12 by disrupting the interaction between mutant ALK2 and FKBP12. Taken together, FKBP12 binds to and suppresses mutant ALK2 proteins associated with FOP and DIPG, except for PF197-8L.


Asunto(s)
Receptores de Activinas Tipo I/genética , Enfermedades del Desarrollo Óseo/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/fisiología , Neoplasias del Tronco Encefálico/genética , Glioma/genética , Miositis Osificante/genética , Proteína 1A de Unión a Tacrolimus/fisiología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Línea Celular , Humanos , Ratones , Miositis Osificante/patología , Osificación Heterotópica/genética , Transducción de Señal
12.
Genes Cells ; 23(1): 22-34, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29205725

RESUMEN

Chronic myeloid leukemia (CML) is caused by the chimeric protein p210 BCR-ABL encoded by a gene on the Philadelphia chromosome. Although the kinase domain of p210 BCR-ABL is an active driver of CML, the pathological role of its pleckstrin homology (PH) domain remains unclear. Here, we carried out phospholipid vesicle-binding assays to show that cardiolipin (CL), a characteristic mitochondrial phospholipid, is a unique ligand of the PH domain. Arg726, a basic amino acid in the ligand-binding region, was crucial for ligand recognition. A subset of wild-type p210 BCR-ABL that was transiently expressed in HEK293 cells was dramatically translocated from the cytosol to mitochondria in response to carbonyl cyanide m-chlorophenylhydrazone (CCCP) treatment, which induces mitochondrial depolarization and subsequent externalization of CL to the organelle's outer membrane, whereas an R726A mutant of the protein was not translocated. Furthermore, only wild-type p210 BCR-ABL, but not the R726A mutant, suppressed CCCP-induced mitophagy and subsequently enhanced reactive oxygen species production. Thus, p210 BCR-ABL can change its intracellular localization via interactions between the PH domain and CL to cope with mitochondrial damage. This suggests that p210 BCR-ABL could have beneficial effects for cancer proliferation, providing new insight into the PH domain's contribution to CML pathogenesis.


Asunto(s)
Cardiolipinas/metabolismo , Proteínas de Fusión bcr-abl/metabolismo , Mitocondrias/patología , Mitofagia/efectos de los fármacos , Dominios Homólogos a Pleckstrina , Carbonil Cianuro m-Clorofenil Hidrazona/análogos & derivados , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Citosol/metabolismo , Proteínas de Fusión bcr-abl/química , Proteínas de Fusión bcr-abl/genética , Células HEK293 , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Transporte de Proteínas
13.
J Biol Chem ; 289(15): 10748-10760, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24569996

RESUMEN

The ceramide transport protein CERT mediates the inter-organelle transport of ceramide for the synthesis of sphingomyelin, presumably through endoplasmic reticulum (ER)-Golgi membrane contact sites. CERT has a short peptide motif named FFAT, which associates with the ER-resident membrane protein VAP. We show that the phosphorylation of CERT at serine 315, which is adjacent to the FFAT motif, markedly enhanced the interaction of CERT with VAP. The phosphomimetic CERT S315E mutant exhibited higher activity to support the ER-to-Golgi transport of ceramide than the wild-type control in a semi-intact cell system, and this enhanced activity was abrogated when its FFAT motif was deleted. The level of phosphorylation of CERT at Ser-315 increased in HeLa cells treated with a sphingolipid biosynthesis inhibitor or exogenous sphingomyelinase. Expression of CERT S315E induced intracellular punctate structures, to which CERT and VAP were co-localized, and the occurrence of the structure was dependent on both phosphatidylinositol 4-monophosphate binding and VAP binding activities of CERT. Phosphorylation of another region (named a serine-rich motif) in CERT is known to down-regulate the activity of CERT. Analysis of various CERT mutant constructs showed that the de-phosphorylation of the serine-rich motif and the phosphorylation of Ser-315 likely have the additive contribution to enhance the activity of CERT. These results demonstrate that the phosphorylation of CERT at the FFAT motif-adjacent serine affected its affinity for VAP, which may regulate the inter-organelle trafficking of ceramide in response to the perturbation of cellular sphingomyelin and/or other sphingolipids.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Secuencias de Aminoácidos , Apoptosis , Sitios de Unión , Membrana Celular/metabolismo , Ceramidas/química , ADN Complementario/metabolismo , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Lípidos/química , Mutación , Fosforilación , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes/metabolismo , Serina/química , Regulación hacia Arriba
14.
J Biol Chem ; 287(40): 33706-18, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22869376

RESUMEN

Ceramide transport from the endoplasmic reticulum to the Golgi apparatus is crucial in sphingolipid biosynthesis, and the process relies on the ceramide trafficking protein (CERT), which contains pleckstrin homology (PH) and StAR-related lipid transfer domains. The CERT PH domain specifically recognizes phosphatidylinositol 4-monophosphate (PtdIns(4)P), a characteristic phosphoinositide in the Golgi membrane, and is indispensable for the endoplasmic reticulum-to-Golgi transport of ceramide by CERT. In this study, we determined the three-dimensional structure of the CERT PH domain by using solution NMR techniques. The structure revealed the presence of a characteristic basic groove near the canonical PtdIns(4)P recognition site. An extensive interaction study using NMR and other biophysical techniques revealed that the basic groove coordinates the CERT PH domain for efficient PtdIns(4)P recognition and localization in the Golgi apparatus. The notion was also supported by Golgi mislocalization of the CERT mutants in living cells. The distinctive binding modes reflect the functions of PH domains, as the basic groove is conserved only in the PH domains involved with the PtdIns(4)P-dependent lipid transport activity but not in those with the signal transduction activity.


Asunto(s)
Aparato de Golgi/metabolismo , Proteínas Serina-Treonina Quinasas/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Retículo Endoplásmico/metabolismo , Humanos , Cinética , Lípidos/química , Liposomas/química , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosfatidilinositoles/química , Conformación Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Resonancia por Plasmón de Superficie
15.
Methods Cell Biol ; 108: 117-29, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22325600

RESUMEN

The intracellular transport of lipids from the sites of their synthesis to their appropriate destination is a critical step for lipid metabolism. One well-defined inter-organelle lipid movement is the transport of ceramide by ceramide transport protein (CERT). Ceramide, a key intermediate for both sphingomyelin and glycosphingolipids, is synthesized at the endoplasmic reticulum and delivered to the Golgi apparatus to be converted to sphingomyelin. CERT delivers ceramide from the ER to the Golgi apparatus in a non-vesicular and ATP-dependent manner. This chapter describes a reconstitution assay system for ceramide transport with semi-intact cells, which is useful for the study of the CERT-mediated inter-organelle transport of ceramide.


Asunto(s)
Ceramidas/metabolismo , Animales , Transporte Biológico Activo , Tampones (Química) , Células CHO , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/aislamiento & purificación , Proteínas Portadoras/metabolismo , Técnicas de Cultivo de Célula , Extractos Celulares/aislamiento & purificación , Cricetinae , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Modelos Biológicos , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/aislamiento & purificación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo
16.
J Mol Biol ; 396(2): 245-51, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20036255

RESUMEN

The cytosolic protein CERT transfers ceramide from the endoplasmic reticulum to the Golgi apparatus where ceramide is converted to SM. The C-terminal START (steroidogenic acute regulatory protein-related lipid transfer) domain of CERT binds one ceramide molecule in its central amphiphilic cavity. (1R,3R)-N-(3-Hydroxy-1-hydroxymethyl-3-phenylpropyl)alkanamide (HPA), a synthesized analogue of ceramide, inhibits ceramide transfer by CERT. Here we report crystal structures of the CERT START domain in complex with HPAs of varying acyl chain lengths. In these structures, one HPA molecule is buried in the amphiphilic cavity where the amide and hydroxyl groups of HPA form a hydrogen-bond network with specific amino acid residues. The Omega1 loop, which has been suggested to function as a gate of the cavity, adopts a different conformation when bound to HPA than when bound to ceramide. In the Omega1 loop region, Trp473 shows the largest difference between these two structures. This residue exists inside of the cavity in HPA-bound structures, while it is exposed to the outside of the protein in the apo-form and ceramide-bound complex structures. Surface plasmon resonance experiments confirmed that Trp473 is important for interaction with membranes. These results provide insights into not only the molecular mechanism of inhibition by HPAs but also possible mechanisms by which CERT interacts with ceramide.


Asunto(s)
Ceramidas/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Amidas/química , Amidas/metabolismo , Animales , Transporte Biológico/fisiología , Células CHO , Cricetinae , Cricetulus , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Estructura Terciaria de Proteína , Transducción de Señal/fisiología
17.
Biochim Biophys Acta ; 1791(7): 684-91, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19416656

RESUMEN

The transport and sorting of lipids from the sites of their synthesis to their appropriate destinations are fundamental for membrane biogenesis. In the synthesis of sphingolipids in mammalian cells, ceramide is newly produced at the endoplasmic reticulum (ER), and transported from the ER to the trans Golgi regions, where it is converted to sphingomyelin. CERT mediates the ER-to-Golgi trafficking of ceramide. CERT contains several functional domains and motifs including i) a START domain capable of catalyzing inter-membrane transfer of ceramide, ii) a pleckstrin homology domain, which serves to target the Golgi apparatus, iii) a FFAT motif which interacts with the ER-resident membrane protein VAP, and iv) a serine-repeat motif, of which hyperphosphorylation down-regulates CERT activity. It has been suggested that CERT extracts ceramide from the ER and carries it to the Golgi apparatus in a non-vesicular manner and that efficient CERT-mediated trafficking of ceramide occurs at membrane contact sites between the ER and the Golgi apparatus.


Asunto(s)
Ceramidas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Secuencia de Aminoácidos , Animales , Transporte Biológico , Ceramidas/biosíntesis , Ceramidas/fisiología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Datos de Secuencia Molecular , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo
18.
Mol Biol Cell ; 20(1): 348-57, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19005213

RESUMEN

Intracellullar trafficking of lipids is fundamental to membrane biogenesis. For the synthesis of sphingomyelin, ceramide is transported from the endoplasmic reticulum to the Golgi apparatus by the ceramide transfer protein CERT. CERT is phosphorylated by protein kinase D at S132 and subsequently multiple times in a serine-repeat motif, resulting in its inactivation. However, the kinase involved in the multiple phosphorylation remains unclear. Here, we identify the gamma2 isoform of casein kinase I (CKIgamma2) as a kinase whose overexpression confers sphingomyelin-directed toxin-resistance to Chinese hamster ovary cells. In a transformant stably expressing CKIgamma2, CERT was hyperphosphorylated, and the intracellular trafficking of ceramide was retarded, thereby reducing de novo sphingomyelin synthesis. The reduction in the synthesis of sphingomyelin caused by CKIgamma2 was reversed by the expression of CERT mutants that are not hyperphosphorylated. Furthermore, CKIgamma2 directly phosphorylated CERT in vitro. Among three gamma isoforms, only knockdown of gamma2 isoform caused drastic changes in the ratio of hypo- to hyperphosphorylated form of CERT in HeLa cells. These results indicate that CKIgamma2 hyperphosphorylates the serine-repeat motif of CERT, thereby inactivating CERT and down-regulating the synthesis of sphingomyelin.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Ceramidas/metabolismo , Esfingomielinas/biosíntesis , Secuencia de Aminoácidos , Animales , Células CHO , Quinasa de la Caseína I/genética , Cricetinae , Cricetulus , Retículo Endoplásmico/metabolismo , Técnicas de Silenciamiento del Gen , Aparato de Golgi/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Toxinas Biológicas/metabolismo
19.
IUBMB Life ; 60(8): 511-8, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18459163

RESUMEN

Recent discoveries of two sphingolipid transfer proteins, CERT and FAPP2, have brought the field of sphingolipid metabolism to a more dynamic stage. CERT transfers ceramide from the endoplasmic reticulum (ER) to the Golgi apparatus, a step crucial for sphingomyelin (SM) synthesis. The pleckstrin homology (PH) domain and the FFAT motif of CERT restrict the direction of transfer and destination of ceramide through binding to phosphatidylinositol 4-monophosphate (PI4P) at the Golgi and the ER resident proteins, VAPs, respectively. CERT is regulated by the phosphorylation and dephosphorylation of serine/threonine, in which protein kinase D, possibly casein kinase I, and PP2Cepsilon are involved. On the other hand, FAPP2 transfers glucosylceramide (GlcCer) to appropriate sites for the synthesis of complex glycosphingolipids. Like CERT, FAPP2 contains a PH domain, the binding of which to PI4P is required for its localization to the Golgi. These observations indicate that lipid transfer proteins, CERT and FAPP2, spatially regulate lipid metabolism on the cytosolic side.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Modelos Biológicos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Esfingolípidos/metabolismo , Transporte Biológico/fisiología , Ceramidas/metabolismo , Humanos , Fosforilación , Estructura Terciaria de Proteína
20.
J Biol Chem ; 283(24): 16682-92, 2008 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-18411267

RESUMEN

Increased cellular ceramide accounts in part for UVB irradiation-induced apoptosis in cultured human keratinocytes with concurrent increased glucosylceramide but not sphingomyelin generation in these cells. Given that conversion of ceramide to non-apoptotic metabolites such as sphingomyelin and glucosylceramide protects cells from ceramide-induced apoptosis, we hypothesized that failed up-regulation of sphingomyelin generation contributes to ceramide accumulation following UVB irradiation. Because both sphingomyelin synthase and glucosylceramide synthase activities were significantly decreased in UVB-irradiated keratinocytes, we investigated whether alteration(s) in the function of ceramide transport protein (or CERT) required for sphingomyelin synthesis occur(s) in UVB-irradiated cells. Fluorescently labeled N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-d-erythro-sphingosine (C(5)-DMB-ceramide) relocation to the Golgi was diminished after irradiation, consistent with decreased CERT function, whereas the CERT inhibitor N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecanamide (1R,3R isomer) (HPA-12) produced an equivalent effect. UVB irradiation also induced the rapid formation of a stable CERT homotrimer complex in keratinocytes as determined by Western immunoblot and mass spectrometry analyses, a finding replicated in HeLa, HEK293T, and HaCaT cells and in murine epidermis. Ceramide binding activity was decreased in recombinant CERT proteins containing the UVB-induced homotrimer. The middle region domain of the CERT protein was required for the homotrimer formation, whereas neither the pleckstrin homology (Golgi-binding) nor the START (ceramide-binding) domains were involved. Finally like UVB-treated keratinocytes, HPA-12 blockade of CERT function increased keratinocyte apoptosis, decreased sphingomyelin synthesis, and led to accumulation of ceramide. Thus, UVB-induced CERT homotrimer formation accounts, at least in part, for apoptosis and failed up-regulation of sphingomyelin synthesis following UVB irradiation, revealing that inactive CERT can attenuate a key metabolic protective mechanism against ceramide-induced apoptosis in keratinocytes.


Asunto(s)
Proteínas Serina-Treonina Quinasas/biosíntesis , Esfingomielinas/metabolismo , Rayos Ultravioleta , Animales , Apoptosis , Línea Celular Tumoral , Dimerización , Células HeLa , Humanos , Queratinocitos/metabolismo , Ratones , Modelos Biológicos , Óxido Nítrico/metabolismo , Estrés Oxidativo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...