Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(37)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34508003

RESUMEN

We recently synthesized one-dimensional (1D) van der Waals heterostructures in which different atomic layers (e.g., boron nitride or molybdenum disulfide) seamlessly wrap around a single-walled carbon nanotube (SWCNT) and form a coaxial, crystalized heteronanotube. The growth process of 1D heterostructure is unconventional-different crystals need to nucleate on a highly curved surface and extend nanotubes shell by shell-so understanding the formation mechanism is of fundamental research interest. In this work, we perform a follow-up and comprehensive study on the structural details and formation mechanism of chemical vapor deposition (CVD)-synthesized 1D heterostructures. Edge structures, nucleation sites, and crystal epitaxial relationships are clearly revealed using transmission electron microscopy (TEM). This is achieved by the direct synthesis of heteronanotubes on a CVD-compatible Si/SiO2 TEM grid, which enabled a transfer-free and nondestructive access to many intrinsic structural details. In particular, we have distinguished different-shaped boron nitride nanotube (BNNT) edges, which are confirmed by electron diffraction at the same location to be strictly associated with its own chiral angle and polarity. We also demonstrate the importance of surface cleanness and isolation for the formation of perfect 1D heterostructures. Furthermore, we elucidate the handedness correlation between the SWCNT template and BNNT crystals. This work not only provides an in-depth understanding of this 1D heterostructure material group but also, in a more general perspective, serves as an interesting investigation on crystal growth on highly curved (radius of a couple of nanometers) atomic substrates.

2.
Science ; 367(6477): 537-542, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32001649

RESUMEN

We present the experimental synthesis of one-dimensional (1D) van der Waals heterostructures, a class of materials where different atomic layers are coaxially stacked. We demonstrate the growth of single-crystal layers of hexagonal boron nitride (BN) and molybdenum disulfide (MoS2) crystals on single-walled carbon nanotubes (SWCNTs). For the latter, larger-diameter nanotubes that overcome strain effect were more readily synthesized. We also report a 5-nanometer-diameter heterostructure consisting of an inner SWCNT, a middle three-layer BN nanotube, and an outer MoS2 nanotube. Electron diffraction verifies that all shells in the heterostructures are single crystals. This work suggests that all of the materials in the current 2D library could be rolled into their 1D counterparts and a plethora of function-designable 1D heterostructures could be realized.

3.
Nanoscale Adv ; 2(6): 2326-2332, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-36133376

RESUMEN

Here we report new organic/inorganic hybrid colloidal liquid crystals that consist of colloidal calcium carbonate (CaCO3)/poly(acrylic acid) (PAA) hybrid nanodisks. We selectively synthesized anisotropic liquid-crystalline CaCO3-based nanodisk and nanorod composites in water/methanol mixtures, which formed discotic and calamitic nematic liquid crystals in their colloidal dispersions, respectively. The vaterite nanodisks and calcite nanorods were selectively synthesized in methanol-rich and water-rich solutions, respectively. The observation of these materials with transmission electron microscopy clarified the atomic-scale structures of these nanodisks and nanorods, revealing the self-organized CaCO3/PAA hybrid structures with the ability to form colloidal liquid crystals. The liquid crystals were prepared under mild and aqueous conditions by methods using acidic polymers inspired by the biomineralization process. The present approach provides new insights into the design of organic/inorganic hybrid colloidal liquid crystals and development of environmentally friendly functional hybrid materials.

4.
Proc Natl Acad Sci U S A ; 117(1): 80-85, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31857386

RESUMEN

Thin film transistors (TFTs) are indispensable building blocks in any electronic device and play vital roles in switching, processing, and transmitting electronic information. TFT fabrication processes inherently require the sequential deposition of metal, semiconductor, and dielectric layers and so on, which makes it difficult to achieve reliable production of highly integrated devices. The integration issues are more apparent in organic TFTs (OTFTs), particularly for solution-processed organic semiconductors due to limits on which underlayers are compatible with the printing technologies. We demonstrate a ground-breaking methodology to integrate an active, semiconducting layer of OTFTs. In this method, a solution-processed, semiconducting membrane composed of few-molecular-layer-thick single-crystal organic semiconductors is exfoliated by water as a self-standing ultrathin membrane on the water surface and then transferred directly to any given underlayer. The ultrathin, semiconducting membrane preserves its original single crystallinity, resulting in excellent electronic properties with a high mobility up to 12 [Formula: see text] The ability to achieve transfer of wafer-scale single crystals with almost no deterioration of electrical properties means the present method is scalable. The demonstrations in this study show that the present transfer method can revolutionize printed electronics and constitute a key step forward in TFT fabrication processes.

5.
Sci Adv ; 5(5): eaat9459, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31236457

RESUMEN

Recently, W-based catalysts have provided a promising route to synthesize single-walled carbon nanotubes (SWCNTs) with specific chirality, but the mechanism of the growth selectivity is vaguely understood. We propose a strategy to identify the atomic structure as well as the structure evolution of the Co-W-C ternary SWCNT catalyst. The key is to use a thin SiO2 film as the catalyst support and observation window. As the catalyst is uniformly prepared on this SiO2 film and directly used for the SWCNT synthesis, this method has an advantage over conventional methods: it creates an opportunity to obtain original, statistical, and dynamic understanding of the catalyst. As a technique, atomic-scale imaging directly on SiO2 serves as a powerful and versatile tool to investigate nanocrystals and high-temperature reactions; for the synthesis of SWCNTs, this work successfully visualizes the structure and evolution of the catalyst and illuminates the possible nucleation sites of the chirality-specific growth.

6.
ACS Appl Mater Interfaces ; 11(19): 17759-17765, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31010284

RESUMEN

Recently, we found that self-organization of hydroxyapatite (HAp) with poly(acrylic acid) (PAA) leads to the formation of liquid-crystalline (LC) nanorod hybrids that form aligned films and show stimuli-responsive properties. Here, we demonstrate that these biocompatible HAp/PAA hybrid nanorods represent a platform technology as drug nanocarriers for photodynamic cancer therapy and as bioscaffolds for the control of cellular alignment and growth. To use hybrid nanorods as a drug nanocarrier, we introduced methylene blue (MB), a typical photosensitizer for photodynamic therapy, into the PAA nanolayer covering the surface of the HAp nanocrystals through electrostatic interactions. The stable MB-loaded HAp/PAA hybrid nanorods efficiently produced singlet oxygen from MB upon light irradiation and showed remarkable photodynamic therapeutic effects in cancer cells. Moreover, taking advantage of the mechanically responsive LC alignment properties of the HAp/PAA hybrid nanorods, macroscopically oriented bioscaffolds were prepared through a spin-coating process. The cells cultured on the oriented scaffolds showed cellular alignment and elongation along the oriented direction of the hybrid nanorods. The HAp/PAA hybrid nanorods demonstrate potential in drug delivery and tissue engineering. These unique LC HAp/PAA hybrid nanorods have significant potential as a platform for the development of various types of biomaterial.


Asunto(s)
Materiales Biocompatibles/química , Nanotubos/química , Fotoquimioterapia , Ingeniería de Tejidos , Portadores de Fármacos/química , Portadores de Fármacos/uso terapéutico , Sistemas de Liberación de Medicamentos , Durapatita/química , Humanos , Cristales Líquidos/química , Polímeros , Andamios del Tejido/química
7.
Nano Lett ; 19(3): 2162-2168, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30785297

RESUMEN

In oxide materials, the presence of dislocations often strongly affects the properties of thin film and multilayer devices. Although it was reported that ionic conduction can be enhanced by introducing dislocations in ionic conductors, the underlying mechanism of such enhancement remains unclear. Here we analyzed the ionic conduction enhancement in an yttria-stabilized zirconia (YSZ) single edge dislocation from a structural point of view, using atomic resolution scanning transmission electron microscopy (STEM). First, the atomic structure and chemistry of a dislocation in YSZ were characterized by STEM and energy dispersive X-ray spectroscopy (EDS). A relative ionic conduction variation map around the dislocation was then estimated based on the well-established strain-conductivity and chemistry-conductivity relationships in YSZ. We propose that a faster ionic conductivity path can be formed around the dislocation core due to the coupling of the tensile strain field and dopant segregation, which could account for enhanced ionic conductivity along dislocations.

8.
Phys Rev Lett ; 120(26): 267601, 2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-30004731

RESUMEN

Owing to the broken translational symmetry at dislocations, a strain gradient naturally exists around the dislocation cores and can significantly influence the electrical and mechanical properties. We use aberration corrected scanning transmission electron microscopy to directly measure the flexoelectric polarization (∼28 µC cm^{-2}) at dislocation cores in SrTiO_{3}. The polarization charges can interact with the nonstoichiometric dislocation cores and thus impact the electrical activities. Our findings can help us to understand the properties of dislocations in perovskite, providing new insights into the design of new devices via defect engineering such as bicrystal fabrication and thin film growth.

9.
Nat Commun ; 9(1): 568, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29422609

RESUMEN

Liquid crystals are mostly formed by self-assembly of organic molecules. In contrast, inorganic materials available as liquid crystals are limited. Here we report the development of liquid-crystalline (LC) hydroxyapatite (HAp), which is an environmentally friendly and biocompatible biomineral. Its alignment behavior, magneto-optical properties, and atomic-scale structures are described. We successfully induce LC properties into aqueous colloidal dispersions of rod-shaped HAp by controlling the morphology of the material using acidic macromolecules. These LC HAp nanorod materials are macroscopically oriented in response to external magnetic fields and mechanical forces. We achieve magnetic modulation of the optical transmission by dynamic control of the LC order. Atomic-scale observations using transmission electron microscopy show the self-organized inorganic/organic hybrid structures of mesogenic nanorods. HAp liquid crystals have potential as bio-friendly functional materials because of their facile preparation, the bio-friendliness of HAp, and the stimuli-responsive properties of these colloidal ordered fluids.

10.
Chem Commun (Camb) ; 54(7): 794-797, 2018 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-29308805

RESUMEN

PEDOT coated iron phosphide nanorod arrays are synthesized and demonstrated as high-performance negative electrodes for supercapacitors with high areal specific capacitance and significantly improved cycling stability. A MnO2//FeP/PEDOT aqueous asymmetric supercapacitor is fabricated with a high volumetric capacitance of 4.53 F cm-3 and an energy density of 1.61 mW h cm-3.

11.
Ultramicroscopy ; 184(Pt A): 177-187, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28934631

RESUMEN

We study the effects of specimen mistilt on the picometer-scale measurement of local structure by combing experiment and simulation in annular bright-field scanning transmission electron microscopy (ABF-STEM). A relative distance measurement method is proposed to separate the tilt effects from the scan noise and sample drift induced image distortion. We find that under a typical experimental condition a small specimen tilt (∼6 mrad) in 25 nm thick SrTiO3 along [001] causes 11.9 pm artificial displacement between O and Sr/TiO columns in ABF image, which is more than 3 times of scan noise and sample drift induced image distortion ∼3.2 pm, suggesting the tilt effect could be dominant for the quantitative analysis of ABF images. The artifact depends on the crystal mistilt angle, specimen thickness, defocus, convergence angle and uncorrected aberration. Our study provides useful insights into detecting and correcting tilt effects during both experiment operation and data analysis to extract the real structure information and avoid mis-interpretations of atomic structure as well as the properties such as oxygen octahedral distortion/shift.

12.
Ultramicroscopy ; 184(Pt A): 217-224, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28985625

RESUMEN

By using the state-of-the-art microscopy and spectroscopy in aberration-corrected scanning transmission electron microscopes, we determine the atomic arrangements, occupancy, elemental distribution, and the electronic structures of dislocation cores in the 10° tilted SrTiO3 bicrystal. We identify that there are two different types of oxygen deficient dislocation cores, i.e., the SrO plane terminated Sr0.82Ti0.85O3-x (Ti3.67+, 0.48 ≤ x ≤ 0.91) and TiO2 plane terminated Sr0.63Ti0.90O3-y (Ti3.60+, 0.57 ≤ y ≤ 1). They have the same Burgers vector of a[100] but different atomic arrangements and chemical properties. Besides the oxygen vacancies, Sr vacancies and rocksalt-like titanium oxide reconstruction are also identified in the dislocation core with TiO2 plane termination. Our atomic-scale study reveals the true atomic structures and chemistry of individual dislocation cores, providing useful insights into understanding the properties of dislocations and grain boundaries.

13.
ACS Nano ; 11(11): 11376-11382, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29028310

RESUMEN

Crystalline interfaces in materials often govern the macroscopic functional properties owing to their complex structure and chemical inhomogeneity. For ionic crystals, however, such understanding has been precluded by the debatable local anion distribution across crystal interfaces. In this study, using yttria-stabilized zirconia as a model material, the oxygen vacancy distribution across individual grain boundaries was directly quantified by atomic-resolution scanning transmission electron microscopy with ultrahigh-sensitive energy-dispersive X-ray spectroscopy. Combined with dynamical scattering calculations, we unambiguously show that the relative oxygen concentrations increase in four high-angle grain boundaries, indicating that the oxygen vacancies are actually depleted near the grain boundary cores. These results experimentally evidence that the long-range electric interaction is the dominant factor to determine the local point defect distribution at ionic crystal interfaces.

14.
Acc Chem Res ; 50(6): 1293-1302, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28525260

RESUMEN

Self-assembling structures and their dynamical processes in polymeric systems have been investigated using three-dimensional transmission electron microscopy (3D-TEM). Block copolymers (BCPs) self-assemble into nanoscale periodic structures called microphase-separated structures, a deep understanding of which is important for creating nanomaterials with superior physical properties, such as high-performance membranes with well-defined pore size and high-density data storage media. Because microphase-separated structures have become increasingly complicated with advances in precision polymerization, characterizing these complex morphologies is becoming increasingly difficult. Thus, microscopes capable of obtaining 3D images are required. In this article, we demonstrate that 3D-TEM is an essential tool for studying BCP nanostructures, especially those self-assembled during dynamical processes and under confined conditions. The first example is a dynamical process called order-order transitions (OOTs). Upon changing temperature or pressure or applying an external field, such as a shear flow or electric field, BCP nanostructures transform from one type of structure to another. The OOTs are examined by freezing the specimens in the middle of the OOT and then observing the boundary structures between the preexisting and newly formed nanostructures in three-dimensions. In an OOT between the bicontinuous double gyroid and hexagonally packed cylindrical structures, two different types of epitaxial phase transition paths are found. Interestingly, the paths depend on the direction of the OOT. The second example is BCP self-assemblies under confinement that have been examined by 3D-TEM. A variety of intriguing and very complicated 3D morphologies can be formed even from the BCPs that self-assemble into simple nanostructures, such as lamellar and cylindrical structures in the bulk (in free space). Although 3D-TEM is becoming more frequently used for detailed morphological investigations, it is generally used to study static nanostructures. Although OOTs are dynamical processes, the actual experiment is done in the static state, through a detailed morphological study of a snapshot taken during the OOT. Developing time-dependent nanoscale 3D imaging has become a hot topic. Here, the two main problems preventing the development of in situ electron tomography for polymer materials are addressed. First, the staining protocol often used to enhance contrast for electrons is replaced by a new contrast enhancement based on chemical differences between polymers. In this case, no staining is necessary. Second, a new 3D reconstruction algorithm allows us to obtain a high-contrast, quantitative 3D image from fewer projections than is required for the conventional algorithm to achieve similar contrast, reducing the number of projections and thus the electron beam dose. Combining these two new developments is expected to open new doors to 3D in situ real-time structural observation of polymer materials.

15.
ACS Appl Mater Interfaces ; 9(1): 36-41, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-27992169

RESUMEN

Multifunctional catalysts are of great interest in catalysis because their multiple types of catalytic or functional groups can cooperatively promote catalytic transformations better than their constituents do individually. Herein we report a new synthetic route involving the surface functionalization of nanoporous silica with a rationally designed and synthesized dihydrosilane (3-aminopropylmethylsilane) that leads to the introduction of catalytically active grafted organoamine as well as single metal atoms and ultrasmall Pd or Ag-doped Pd nanoparticles via on-site reduction of metal ions. The resulting nanomaterials serve as highly effective bifunctional dehydrogenative catalysts for generation of H2 from formic acid.

16.
Nanoscale ; 8(30): 14523-9, 2016 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-27412697

RESUMEN

Synthesis of single-walled carbon nanotubes (SWNTs) with well-defined atomic arrangements has been widely recognized in the past few decades as the biggest challenge in the SWNT community, and has become a bottleneck for the application of SWNTs in nano-electronics. Here, we report a selective synthesis of (12, 6) SWNTs with an enrichment of 50%-70% by chemical vapor deposition (CVD) using sputtered Co-W as a catalyst. This is achieved under much milder reduction and growth conditions than those in the previous report using transition-metal molecule clusters as catalyst precursors (Nature, 2014, 510, 522). Meanwhile, in-plane transmission electron microscopy unambiguously identified an intermediate structure of Co6W6C, which is strongly associated with selective growth. However, most of the W atoms disappear after a 5 min CVD growth, which implies that anchoring W may be important in this puzzling Co-W system.

17.
Nat Commun ; 7: 11079, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-27004614

RESUMEN

Grain boundary segregation is a critical issue in materials science because it determines the properties of individual grain boundaries and thus governs the macroscopic properties of materials. Recent progress in electron microscopy has greatly improved our understanding of grain boundary segregation phenomena down to atomistic dimensions, but solute segregation is still extremely challenging to experimentally identify at the atomic scale. Here, we report direct observations of atomic-scale yttrium solute segregation behaviours in an yttria-stabilized-zirconia grain boundary using atomic-resolution energy-dispersive X-ray spectroscopy analysis. We found that yttrium solute atoms preferentially segregate to specific atomic sites at the core of the grain boundary, forming a unique chemically-ordered structure across the grain boundary.

18.
Sci Rep ; 6: 22936, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26961157

RESUMEN

Liquid-phase bonding is a technologically important method to fabricate high-performance metal/ceramic heterostructures used for power electronic devices. However, the atomic-scale mechanisms of how these two dissimilar crystals specifically bond at the interfaces are still not well understood. Here we analyse the atomically-resolved structure of a liquid-phase bonded heterointerface between Al alloy and AlN single crystal using aberration corrected scanning transmission electron microscopy (STEM). In addition, energy-dispersive X-ray microanalysis, using dual silicon drift X-ray detectors in STEM, was performed to analyze the local chemistry of the interface. We find that a monolayer of MgO is spontaneously formed on the AlN substrate surface and that a polarity-inverted monolayer of AlN is grown on top of it. Thus, the Al alloy is bonded with the polarity-inverted AlN monolayer, creating a complex atomic-scale layered structure, facilitating the bonding between the two dissimilar crystals during liquid-phase bonding processes. Density-functional-theory calculations confirm that the bonding stability is strongly dependent on the polarity and stacking of AlN and MgO monolayers. Understanding the spontaneous formation of layered transition structures at the heterointerface will be key in fabricating very stable Al alloy/AlN heterointerface required for high reliability power electronic devices.

19.
Nanoscale ; 8(3): 1608-17, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26690843

RESUMEN

We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of µm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices.

20.
J Am Chem Soc ; 137(10): 3474-7, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25732196

RESUMEN

Atomic resolution transmission electron microscopic observations at different electron acceleration voltages enabled us to observe visually the energy relaxation process of one conformer into another via rotation of various parts of the molecule. Cross-correlation analysis of sequential transmission electron microscopy (TEM) images or of the difference between experimental and simulated TEM images has been utilized for investigation of the conformational mobility and for structure identification of conformers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...