Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chromatogr A ; 1670: 462997, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35367894

RESUMEN

In this present work, the synthesis of nitrogen doped multi walled carbon nanotubes (N-MWCNTs) grafted Sodium-carboxy methyl cellulose (Na-CMC) hybrid composite was carried out via thermal reduction process. The hybrid composites were thermodynamically characterized by inverse gas chromatography (IGC) and compared to Na-CMC particles. The results were obtained by using 14 different IGC methods and models. We proved that the free energy of adsorption of the different solvents on N-MWCNTs-Na-CMC surface was equal to the summation of both free enthalpies of the solvents separately adsorbed on N-MWCNT and on Na-CMC surfaces. The London dispersive surface free energy of different materials was calculated by using the various molecular models. The more precise results were obtained by Hamieh model based on the effect of the temperature on the surface area of organic molecules. It was proved that the dispersive component of the surface energy of N-MWCNTs-Na-CMC was equal to the geometric mean than that of N-MWCNTs and Na-CMC surfaces. Lewis Acid base properties of the various materials were determined by using the different models and methods. A stronger basic character was highlighted for the different solid surfaces with more accentuated acid base character for N-MWCNT solid. Furthermore, the potential usage of the hybrid nanocomposite was studied for the practical application of the self-powered UV photodetection. On the other hand, the N-MWCNTs-Na-CMC hybrid heterostructure N-MWCNTs-Na-CMC exhibited excellent photoresponse characteristics with a good stability and reproducibility under the UV illumination (λ=382 nm) at zero bias. The high photoresponse performances were mainly attributed to the improved conductivity and enhanced charge transfer resulting from the synergetic effect of N-MWCNTs-Na-CMC hybrid heterostructure. The detailed photoresponse properties of the N-MWCNTs-Na-CMC hybrid heterostructure was discussed in detail using energy band theory.


Asunto(s)
Nanotubos de Carbono , Ácidos , Carboximetilcelulosa de Sodio , Cromatografía de Gases/métodos , Materiales Dentales , Nanotubos de Carbono/química , Nitrógeno , Reproducibilidad de los Resultados , Solventes
2.
Biomed Res Int ; 2021: 5125681, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631882

RESUMEN

Studies on green biosynthesis of newly engineered nanoparticles for their prominent medicinal applications are being the torch-bearing concerns of the state-of-the-art research strategies. In this concern, we have engineered the biosynthesized Luffa acutangula silver nanoparticles of flavonoid O-glycosides in the anisotropic form isolated from aqueous leave extracts of Luffa acutangula, a popular traditional and ayurvedic plant in south-east Asian countries. These were structurally confirmed by Ultraviolet-visible (UV-Vis), Fourier transform infrared spectroscopy accessed with attenuated total reflection (FTIR-ATR) spectral analyses followed by the scanning electron microscopic (SEM) and the X-ray diffraction (XRD) crystallographic studies and found them with the face-centered cubic (fcc) structure. Medicinally, we have explored their significant antioxidant (DPPH and ABTS assays), antibacterial (disc diffusion assay on E. coli, S. aureus, B. subtilis, S. fecilis, and S. boydii), and anticancer (MTT assay on MCF-7, MDA-MB-231, U87, and DBTRG cell lines) potentialities which augmented the present investigation. The molecular docking analysis of title compounds against 3NM8 (DPPH) and 1DNU (ABTS) proteins for antioxidant activity; 5FGK (Gram-Positive Bacteria) and 1AB4 (Gram-Negative Bacteria) proteins for antibacterial activity; and 4GBD (MCF-7), 5FI2 (MDA-MB-231), 1D5R (U87), and 5TIJ (DBTRG) proteins for anticancer activity has affirmed the promising ligand-protein binding interactions among the hydroxy groups of the title compounds and aspartic acid of the concerned enzymatic proteins. The binding energy varying from -9.1645 to -7.7955 for Cosmosioside (1, Apigenin-7-glucoside) and from -9.2690 to -7.8306 for Cynaroside (2, Luteolin-7-glucoside) implies the isolated compounds as potential bioactive compounds. In addition, the performed studies like QSAR, ADMET, bioactivity properties, drug scores, and toxicity risks confirmed them as potential drug candidates and aspartic acid receptor antagonists. This research auxiliary augmented the existing array of phytological nanomedicines with new drug candidates that are credible with multiple bioactivities.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Tecnología Química Verde , Luffa/química , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Plata/farmacología , Bacterias/efectos de los fármacos , Benzotiazoles/química , Compuestos de Bifenilo/química , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Color , Humanos , Ligandos , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Picratos/química , Extractos Vegetales/química , Hojas de la Planta/química , Relación Estructura-Actividad Cuantitativa , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Ácidos Sulfónicos/química , Pruebas de Toxicidad , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...