Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 30(43): 435803, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30229750

RESUMEN

The magnetic structure of the ternary equiatomic intermetallic compound PrCuSi is investigated using neutron powder diffraction experiments in 0 T as well as in external magnetic fields up to 2 T. The PrCuSi compound crystallizes in the hexagonal Ni2In-type structure, in the space group P63/mmc. In this structure, cationic ordering of Cu and Si takes place. The antiferromagnetic phase transition in the Pr sublattice takes place at [Formula: see text] K in 0 T. Under an external magnetic field of 2 T, a field-induced ferromagnetic phase is observed. Magnetoelastic coupling is evidenced by an increase in the unit cell volume. Clear signatures of a mixed antiferromagnetic and ferromagnetic phase in weak, intermediate fields, 0.4-0.8 T, are obtained from the present study. Using the present set of experimental data, we construct the H - T phase diagram of PrCuSi.

2.
J Phys Condens Matter ; 29(47): 475802, 2017 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-29095702

RESUMEN

In order to understand the origin of the huge quasielastic magnetic scattering observed previously with a back-scattering neutron spectrometer, we have re-investigated the low energy excitations in HoCrO3 by inelastic neutron scattering in a much wider energy range with time-of-flight neutron spectrometers. The inelastic signals are due to the excitations between the ground state doublet of the Ho ion. The quasielastic signal is due to the fluctuation of the disordered Ho moments. At low temperature the intensity of quasielastic scattering is small. It starts increasing as the temperature increases above 30 K. At the same temperature, the elastic intensity due to Ho moment ordering decreases in a similar way. This observation strengthens the hypothesis that the quasielastic scattering is due the fluctuations of the disordered Ho moments. The time scale of fluctuations has been determine from the quasielastic scattering and was found to vary from about 22 ps at [Formula: see text] K to about 2.5 ps at [Formula: see text] K. The stretched exponential line shape indicates a distribution of decay rates at low temperatures.

3.
J Phys Condens Matter ; 29(34): 345801, 2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28649978

RESUMEN

The intermetallic compound PrFe2Al8 that possesses a three-dimensional network structure of Al polyhedra centered at the transition metal element Fe and the rare earth Pr is investigated through neutron powder diffraction and inelastic neutron scattering in order to elucidate the magnetic ground state of Pr and Fe and the crystal field effects of Pr. Our neutron diffraction study confirms long-range magnetic order of Pr below [Formula: see text] K in this compound. Subsequent magnetic structure estimation reveals a magnetic propagation vector [Formula: see text] with a magnetic moment value of [Formula: see text]/Pr along the orthorhombic c-axis and evidence the lack of ordering in the Fe sublattice. The inelastic neutron scattering study reveals one crystalline electric field excitation near 19 meV at 5 K in PrFe2Al8. The energy-integrated intensity of the 19 meV excitation as a function of [Formula: see text] follows the square of the magnetic form factor of [Formula: see text] thereby confirming that the inelastic excitation belongs to the Pr sublattice. The second sum rule applied to the dynamic structure factor indicates only 1.6(2) [Formula: see text] evolving at the 19 meV peak compared to the 3.58 [Formula: see text] for free [Formula: see text], indicating that the crystal field ground state is magnetic and the missing moment is associated with the resolution limited quasi-elastic line. The magnetic order occurring in Pr in PrFe2Al8 is counter-intuitive to the symmetry-allowed crystal field level scheme, hence, is suggestive of exchange-mediated mechanisms of ordering stemming from the magnetic ground state of the crystal field levels.

4.
J Phys Condens Matter ; 28(47): 476001, 2016 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-27633731

RESUMEN

We report a comprehensive specific heat and inelastic neutron scattering study to explore the possible origin of multiferroicity in HoCrO3. We have performed specific heat measurements in the temperature range 100 mK-290 K and inelastic neutron scattering measurements were performed in the temperature range 1.5-200 K. From the specific heat data we determined hyperfine splitting at 22.5(2) µeV and crystal field transitions at 1.379(5) meV, 10.37(4) meV, 15.49(9) meV and 23.44(9) meV, indicating the existence of strong hyperfine and crystal field interactions in HoCrO3. Further, an effective hyperfine field is determined to be 600(3) T. The quasielastic scattering observed in the inelastic scattering data and a large linear term [Formula: see text] mJ mol(-1) K(-2) in the specific heat is attributed to the presence of short range exchange interactions, which is understood to be contributing to the observed ferroelectricity. Further the nuclear and magnetic entropies were computed to be, ∼17.2 Jmol(-1) K(-1) and ∼34 Jmol(-1) K(-1), respectively. The entropy values are in excellent agreement with the limiting theoretical values. An anomaly is observed in the peak position of the temperature dependent crystal field spectra around 60 K, at the same temperature an anomaly in the pyroelectric current is reported. From this we could elucidate a direct correlation between the crystal electric field excitations of Ho(3+) and ferroelectricity in HoCrO3. Our present study, along with recent reports, confirm that HoCrO3, and RCrO3 (R = rare earth) in general, possess more than one driving force for the ferroelectricity and multiferroicity.

5.
J Phys Condens Matter ; 25(28): 286003, 2013 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-23779198

RESUMEN

We have investigated low energy nuclear spin excitations in the strongly correlated electron compound HoCrO3. We observe clear inelastic peaks at E = 22.18 ± 0.04 µeV in both energy loss and gain sides. The energy of the inelastic peaks remains constant in the temperature range 1.5-40 K at which they are observed. The intensity of the inelastic peak increases at first with increasing temperature and then decreases at higher temperatures. The temperature dependence of the energy and intensity of the inelastic peaks is very unusual compared to that observed in other Nd, Co, V and also simple Ho compounds. Huge quasielastic scattering appears at higher temperatures presumably due to the fluctuating electronic moments of the Ho ions that get increasingly disordered at higher temperatures. The strong quasielastic scattering may also originate in the first Ho crystal-field excitations at about 1.5 meV.

6.
J Phys Condens Matter ; 22(34): 346002, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21403267

RESUMEN

We have performed a series of magnetic aging experiments on single crystals of Dy(0.5)Sr(0.5)MnO(3). The results demonstrate striking memory and chaos-like effects in this insulating half-doped perovskite manganite and suggest the existence of strong magnetic relaxation mechanisms of a clustered magnetic state. The spin-glass-like state established below a temperature T(sg)≈ 34 K originates from quenched disorder arising due to the ionic-radii mismatch at the rare earth site. However, deviations from the typical behavior seen in canonical spin glass materials are observed which indicate that the glassy magnetic properties are due to cooperative and frustrated dynamics in a heterogeneous or clustered magnetic state. In particular, the microscopic spin flip time obtained from dynamical scaling near the spin glass freezing temperature is four orders of magnitude larger than microscopic times found in atomic spin glasses. The magnetic viscosity deduced from the time dependence of the zero-field-cooled magnetization exhibits a peak at a temperature T < T(sg) and displays a marked dependence on waiting time in zero field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...