Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Genome ; 14(3): e20125, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34337867

RESUMEN

Whole-genome resequencing (WGRS) of 396 lines, consisting of 104 hybrid parental lines and 292 germplasm lines, were used to study the molecular basis of mid-parent heterosis (MPH) and to identify complementary heterotic patterns in pigeonpea [Cajanus cajan (L.) Millsp.] hybrids. The lines and hybrids were assessed for yield and yield-related traits in multiple environments. Our analysis showed positive MPH values in 78.6% of hybrids, confirming the potential of hybrid breeding in pigeonpea. By using genome-wide prediction and association mapping approaches, we identified 129 single nucleotide polymorphisms and 52 copy number variations with significant heterotic effects and also established a high-yielding heterotic pattern in pigeonpea. In summary, our study highlights the role of WGRS data in the study and use of heterosis in crops where hybrid breeding is expected to boost selection gain in order to ensure global food security.


Asunto(s)
Vigor Híbrido , Fitomejoramiento , Variaciones en el Número de Copia de ADN , Genómica , Sitios de Carácter Cuantitativo
2.
Plant Genome ; 13(2): e20028, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33016616

RESUMEN

Pigeonpea [Cajanus cajan (L.) Millsp.] is a pulse crop cultivated in the semi-arid regions of Asia and Africa. It is a rich source of protein and capable of alleviating malnutrition, improving soil health and the livelihoods of small-holder farmers. Hybrid breeding has provided remarkable improvements for pigeonpea productivity, but owing to a tedious and costly seed production system, an alternative two-line hybrid technology is being explored. In this regard, an environment-sensitive male sterile line has been characterized as a thermosensitive male sterile line in pigeonpea precisely responding to day temperature. The male sterile and fertile anthers from five developmental stages were studied by integrating transcriptomics, proteomics and metabolomics supported by precise phenotyping and scanning electron microscopic study. Spatio-temporal analysis of anther transcriptome and proteome revealed 17 repressed DEGs/DEPs in sterile anthers that play a critical role in normal cell wall morphogenesis and tapetal cell development. The male fertility to sterility transition was mainly due to a perturbation in auxin homeostasis, leading to impaired cell wall modification and sugar transport. Limited nutrient utilization thus leads to microspore starvation in response to moderately elevated day temperature which could be restored with auxin-treatment in the male sterile line. Our findings outline a molecular mechanism that underpins fertility transition responses thereby providing a process-oriented two-line hybrid breeding framework for pigeonpea.


Asunto(s)
Cajanus , África , Asia , Cruzamiento , Cajanus/genética , Fertilidad/genética
3.
Sci Rep ; 10(1): 214, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31937848

RESUMEN

The genetic architecture of seed protein content (SPC) and its relationships to agronomic traits in pigeonpea is poorly understood. Accordingly, five F2 populations segregating for SPC and four agronomic traits (seed weight (SW), seed yield (SY), growth habit (GH) and days to first flowering (DFF)) were phenotyped and genotyped using genotyping-by-sequencing approach. Five high-density population-specific genetic maps were constructed with an average inter-marker distance of 1.6 to 3.5 cM, and subsequently, integrated into a consensus map with average marker spacing of 1.6 cM. Based on analysis of phenotyping data and genotyping data, 192 main effect QTLs (M-QTLs) with phenotypic variation explained (PVE) of 0.7 to 91.3% were detected for the five traits across the five populations. Major effect (PVE ≥ 10%) M-QTLs included 14 M-QTLs for SPC, 16 M-QTLs for SW, 17 M-QTLs for SY, 19 M-QTLs for GH and 24 M-QTLs for DFF. Also, 573 epistatic QTLs (E-QTLs) were detected with PVE ranging from 6.3 to 99.4% across traits and populations. Colocalization of M-QTLs and E-QTLs explained the genetic basis of the significant (P < 0.05) correlations of SPC with SW, SY, DFF and GH. The nature of genetic architecture of SPC and its relationship with agronomic traits suggest that genomics-assisted breeding targeting genome-wide variations would be effective for the simultaneous improvement of SPC and other important traits.


Asunto(s)
Cajanus/genética , Cromosomas de las Plantas/genética , Epistasis Genética , Proteínas de Plantas/genética , Polimorfismo Genético , Sitios de Carácter Cuantitativo , Semillas/genética , Mapeo Cromosómico , Ligamiento Genético , Marcadores Genéticos
4.
Theor Appl Genet ; 133(3): 737-749, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31844966

RESUMEN

This study has identified single-nucleotide polymorphism (SNP) markers associated with nine yield-related traits in pigeonpea by using two backcross populations (BP) developed through interspecific crosses and evaluating them at two locations and 3 years. In both the populations, markers have shown strong segregation distortion; therefore, a quantitative trait locus (QTL) mapping mixed model was used. A total of 86 QTLs explaining 12-21% phenotypic variation were detected in BP-1. On the other hand, 107 QTLs explaining 11-29% phenotypic variation were detected in BP-2. Although most QTLs were environment and trait specific, few stable and consistent QTLs were also detected. Interestingly, 11 QTLs in BP-2 were associated with more than one trait. Among these QTLs, eight QTLs associated with days to 50% flowering and days to 75% maturity were located on CcLG07. One SNP "S7_14185076" marker in BP-2 population has been found associated with four traits, namely days to 50% flowering, days to 75% maturity, primary branches per plant and secondary branches per plant with positive additive effect. Hence, the present study has not only identified QTLs for yield-related traits, but also discovered novel alleles from wild species, which can be used for improvement of traits through genomics-assisted breeding.


Asunto(s)
Cajanus/crecimiento & desarrollo , Cajanus/genética , Sitios de Carácter Cuantitativo , Alelos , Mapeo Cromosómico , Cromosomas de las Plantas , Cruzamientos Genéticos , Estudios de Asociación Genética , Ligamiento Genético , Marcadores Genéticos , Genómica , Genotipo , Técnicas de Genotipaje , Fenotipo , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
5.
Front Plant Sci ; 10: 1269, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31695710

RESUMEN

Pigeonpea [Cajanus cajan (L.) Millsp.], a multipurpose and nutritious grain legume crop, is cultivated for its protein-rich seeds mainly in South Asia and Eastern and Southern Africa. In spite of large breeding efforts for pigeonpea improvement in India and elsewhere, genetic enhancement is inadequate largely due to its narrow genetic base and crop susceptibility to stresses. Wild Cajanus species are novel source of genetic variations for the genetic upgradation of pigeonpea cultivars. In the present study, 75 introgression lines (ILs), derived from crosses involving cultivated pigeonpea variety ICPL 87119 and wild Cajanus cajanifolius and Cajanus acutifolius from the secondary gene pool, were evaluated for yield and yield-attributing traits in diverse environments across locations and years. Restricted maximum likelihood (REML) analysis revealed large genetic variations for days to 50% flower, days to maturity, plant height, primary branches per plant, pods per plant, pod weight per plant, 100-seed weight, and grain yield per plant. Superior ILs with mid-early to medium maturity duration identified in this study are useful genetic resources for use in pigeonpea breeding. Additive main effects and multiplicative interaction (AMMI) analysis unfolded large influence of environment and genotype × environment interaction for variations in yield. A few lines such as ICPL 15023 and ICPL 15072 with yield stability were identified, while a number of lines were completely resistant (0%) to sterility mosaic diseases and/or Fusarium wilt. These lines are novel genetic resources for broadening the genetic base of pigeonpea and bring yield stability and stress tolerance. High-yielding lines ICPL 15010, ICPL 15062, and ICPL 15072 have been included in the initial varietal trials (IVTs) of the All India Coordinated Research Project (AICRP) on pigeonpea for wider evaluation across different agro-ecological zones in India for possible release as variety(ies).

6.
BMC Genomics ; 20(1): 235, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30898108

RESUMEN

BACKGROUND: Pigeonpea has considerable extent of insect-aided natural out-crossing that impedes genetic purity of seeds. Pre-anthesis cleistogamy in pigeonpea promotes self-pollination which helps in maintaining genetic purity. The cleistogamous flowers are linked with shriveled seeds, an undesirable trait from variety adoption point of view, and breeding using genomics tools can help in overcoming this constraint. Therefore, in order to identify genomic regions governing these target traits, one recombinant inbred line (RIL) population was developed using contrasting parents (ICPL 99010 and ICP 5529) for flower shape and shriveled seeds. The RILs were phenotyped for two years and genotyped using the Axiom Cajanus SNP Array. RESULTS: Out of the 56,512 unique sequence variations on the array, the mapping population showed 8634 single nucleotide polymorphism (SNPs) segregating across the genome. These data facilitated generation of a high density genetic map covering 6818 SNPs in 974 cM with an average inter-marker distance of 0.1 cM, which is the lowest amongst all pigeonpea genetic maps reported. Quantitative trait loci (QTL) analysis using this genetic map and phenotyping data identified 5 QTLs associated with cleistogamous flower, 3 QTLs for shriveled seed and 1 QTL for seed size. The phenotypic variance explained by these QTLs ranged from 9.1 to 50.6%. A consistent QTL "qCl3.2" was identified for cleistogamous flower on CcLG03 covering a span of 42 kb in the pigeonpea genome. Epistatic QTLs were also identified for cleistogamous flower and shriveled seed traits. CONCLUSION: Identified QTLs and genomic interactions for cleistogamous flower, shriveled seed and seed size will help in incorporating the required floral architecture in pigeonpea varieties/lines. Besides, it will also be useful in understanding the molecular mechanisms, and map-based gene cloning for the target traits.


Asunto(s)
Cajanus/genética , Mapeo Cromosómico , Flores/crecimiento & desarrollo , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética , Semillas/crecimiento & desarrollo , Cajanus/crecimiento & desarrollo , Genotipo , Fenotipo
7.
Mol Genet Genomics ; 294(1): 57-68, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30173295

RESUMEN

Pigeonpea is an important source of dietary protein to over a billion people globally, but genetic enhancement of seed protein content (SPC) in the crop has received limited attention for a long time. Use of genomics-assisted breeding would facilitate accelerating genetic gain for SPC. However, neither genetic markers nor genes associated with this important trait have been identified in this crop. Therefore, the present study exploited whole genome re-sequencing (WGRS) data of four pigeonpea genotypes (~ 12X coverage) to identify sequence-based markers and associated candidate genes for SPC. By combining a common variant filtering strategy on available WGRS data with knowledge of gene functions in relation to SPC, 108 sequence variants from 57 genes were identified. These genes were assigned to 19 GO molecular function categories with 56% belonging to only two categories. Furthermore, Sanger sequencing confirmed presence of 75.4% of the variants in 37 genes. Out of 30 sequence variants converted into CAPS/dCAPS markers, 17 showed high level of polymorphism between low and high SPC genotypes. Assay of 16 of the polymorphic CAPS/dCAPS markers on an F2 population of the cross ICP 5529 (high SPC) × ICP 11605 (low SPC), resulted in four of the CAPS/dCAPS markers significantly (P < 0.05) co-segregated with SPC. In summary, four markers derived from mutations in four genes will be useful for enhancing/regulating SPC in pigeonpea crop improvement programs.


Asunto(s)
Cajanus/genética , Marcadores Genéticos , Semillas/genética , Secuenciación Completa del Genoma/métodos , Cajanus/metabolismo , Mapeo Cromosómico , ADN de Plantas/genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Fenotipo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/metabolismo
8.
Plant Genome ; 11(3)2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30512043

RESUMEN

As one of the major outputs of next-generation sequencing (NGS), a large number of genome-wide single-nucleotide polymorphisms (SNPs) have been developed in pigeonpea [ (L.) Huth.]. However, SNPs require a genotyping platform or assay to be used in different evolutionary studies or in crop improvement programs. Therefore, we developed an Axiom SNP array with 56K SNPs uniformly distributed across the genome and assessed its utility in a genetic diversity study. From the whole-genome resequencing (WGRS) data on 104 pigeonpea lines, ∼2 million sequence variations (SNPs and insertion-deletions [InDels]) were identified, from which a subset of 56,512 unique and informative sequence variations were selected to develop the array. The Axiom SNP array developed was used for genotyping 103 pigeonpea lines encompassing 63 cultivars released between 1960 and 2014 and 40 breeding, germplasm, and founder lines. Genotyping data thus generated on 103 pigeonpea lines provided 51,201 polymorphic SNPs and InDels. Genetic diversity analysis provided in-depth insights into the genetic architecture and trends in temporal diversity in pigeonpea cultivars. Therefore, the continuous use of the high-density Axiom SNP array developed will accelerate high-resolution trait mapping, marker-assisted breeding, and genomic selection efforts in pigeonpea.


Asunto(s)
Cajanus/genética , Genoma de Planta , Polimorfismo de Nucleótido Simple , Efecto Fundador , Variación Genética , Genotipo , Fitomejoramiento , Análisis por Matrices de Proteínas
9.
Sci Rep ; 7(1): 1911, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28507291

RESUMEN

Fusarium wilt (FW) is one of the most important biotic stresses causing yield losses in pigeonpea. Genetic improvement of pigeonpea through genomics-assisted breeding (GAB) is an economically feasible option for the development of high yielding FW resistant genotypes. In this context, two recombinant inbred lines (RILs) (ICPB 2049 × ICPL 99050 designated as PRIL_A and ICPL 20096 × ICPL 332 designated as PRIL_B) and one F2 (ICPL 85063 × ICPL 87119) populations were used for the development of high density genetic maps. Genotyping-by-sequencing (GBS) approach was used to identify and genotype SNPs in three mapping populations. As a result, three high density genetic maps with 964, 1101 and 557 SNPs with an average marker distance of 1.16, 0.84 and 2.60 cM were developed in PRIL_A, PRIL_B and F2, respectively. Based on the multi-location and multi-year phenotypic data of FW resistance a total of 14 quantitative trait loci (QTLs) including six major QTLs explaining >10% phenotypic variance explained (PVE) were identified. Comparative analysis across the populations has revealed three important QTLs (qFW11.1, qFW11.2 and qFW11.3) with upto 56.45% PVE for FW resistance. This is the first report of QTL mapping for FW resistance in pigeonpea and identified genomic region could be utilized in GAB.


Asunto(s)
Cajanus/microbiología , Mapeo Cromosómico , Fusarium/genética , Tipificación Molecular , Sitios de Carácter Cuantitativo , Cruzamiento , Genética de Población , Genoma Fúngico , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo , Polimorfismo de Nucleótido Simple
10.
Theor Appl Genet ; 130(9): 1773-1784, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28540572

RESUMEN

KEY MESSAGE: We report growth habit profiling following SEM, genetic mapping and QTL analysis. Highlighted CcTFL1 , a candidate for determinacy in pigeonpea, since an Indel marker derived from this gene co-segregated with Dt1 locus. Pigeonpea (Cajanus cajan) is one of the most important legume crops grown in arid and semi-arid regions of the world. It is characterized with few unique features compared with other legume species, such as Lotus, Medicago, and Glycine. One of them is growth habit, an important agronomic trait. In the present study, identification of mutations affecting growth habit accompanied by a precise analysis of phenotype has been done which will shed more light upon developmental regulation in pigeonpea. A genetic study was conducted to examine the inheritance of growth habit and a genotyping by sequencing (GBS)-based genetic map constructed using F2 mapping population derived from crossing parents ICP 5529 and ICP 11605. Inheritance studies clearly demonstrated the dominance of indeterminate (IDT) growth habit over determinate (DT) growth habit in F2 and F2:3 progenies. A total of 787 SNP markers were mapped in the genetic map of 1454 cM map length. Growth habit locus (Dt1) was mapped on the CcLG03 contributing more than 61% of total phenotypic variations. Subsequently, QTL analysis highlighted one gene, CcTFL1, as a candidate for determinacy in pigeonpea, since an Indel marker derived from this gene co-segregated with the Dt1 locus. Ability of this Indel-derived marker to differentiate DT/IDT lines was also validated on 262 pigeonpea lines. This study clearly demonstrated that CcTFL1 is a candidate gene for growth habit in pigeonpea and a user-friendly marker was developed in the present study which will allow low-cost genotyping without need of automation.


Asunto(s)
Cajanus/crecimiento & desarrollo , Cajanus/genética , Genes de Plantas , Proteínas de Plantas/genética , Mapeo Cromosómico , Técnicas de Genotipaje , Mutación INDEL , Fenotipo , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...