Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 20(23): 4621-4632, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38819321

RESUMEN

Knowledge about the dynamic nature of chromatin organization is essential to understand the regulation of processes like DNA transcription and repair. The existing models of chromatin assume that protein organization and chemical states along chromatin are static and the 3D organization is purely a result of protein-mediated intra-chromatin interactions. Here we present a new hypothesis that certain nonequilibrium processes, such as switching of chemical and physical states due to nucleosome assembly/disassembly or gene repression/activation, can also simultaneously influence chromatin configurations. To understand the implications of this inherent nonequilibrium switching, we present a block copolymer model of chromatin, with switching of its segmental states between two states, mimicking active/repressed or protein unbound/bound states. We show that competition between switching timescale Tt, polymer relaxation timescale τp, and segmental relaxation timescale τs can lead to non-trivial changes in chromatin organization, leading to changes in local compaction and contact probabilities. As a function of the switching timescale, the radius of gyration of chromatin shows a non-monotonic behavior with a prominent minimum when Tt ≈ τp and a maximum when Tt ≈ τs. We find that polymers with a small segment length exhibit a more compact structure than those with larger segment lengths. We also find that the switching can lead to higher contact probability and better mixing of far-away segments. Our study also shows that the nature of the distribution of chromatin clusters varies widely as we change the switching rate.


Asunto(s)
Cromatina , Cromatina/química , Modelos Moleculares , Nucleosomas/química , Nucleosomas/metabolismo , ADN/química
2.
Soft Matter ; 19(12): 2204-2213, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36880601

RESUMEN

Since many advanced applications require specific assemblies of nanoparticles (NPs), considerable efforts have been made to fabricate nanoassemblies with specific geometries. Although nanoassemblies can be fabricated through top-down approaches, recent advances show that intricate nanoassemblies can also be obtained through self-assembly, mediated for example by DNA strands. Here, we show, through extensive molecular dynamics simulations, that highly ordered self-assemblies of NPs can be mediated by their adhesion to lipid vesicles (LVs). Specifically, Janus NPs are considered so that the amount by which they are wrapped by the LV is controlled. The specific geometry of the nanoassembly is the result of effective curvature-mediated repulsion between the NPs and the number of NPs adhering to the LV. The NPs are arranged on the LV into polyhedra which satisfy the upper limit of Euler's polyhedral formula, including several deltahedra and three Platonic solids, corresponding to the tetrahedron, octahedron, and icosahedron.

3.
Phys Rev E ; 107(2-1): 024606, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36932499

RESUMEN

The collective behavior of self-propelled particles (SPPs) under the combined effects of a circularly patterned substrate and circular confinement is investigated through coarse-grained molecular dynamics simulations of polarized and disjoint ring polymers. The study is performed over a wide range of values of the SPPs packing fraction ϕ[over ¯], motility force F_{D}, and area fraction of the patterned region. At low packing fractions, the SPPs are excluded from the system's center and exhibit a vortical motion that is dominated by the substrate at intermediate values of F_{D}. This exclusion zone is due to the coupling between the driving force and torque induced by the substrate, which induces an outward spiral motion of the SPPs. For high values of F_{D}, the SPPs exclusion from the center is dominated by the confining boundary. At high values of ϕ[over ¯], the substrate pattern leads to reversals in the vorticity, which become quasiperiodic with increasing ϕ[over ¯]. We also found that the substrate pattern is able to separate SPPs based on their motilities.

4.
Soft Matter ; 18(8): 1653-1665, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35132986

RESUMEN

Curvature induced sorting of lipid membrane bound proteins has been widely studied through experiments that induce curvature variation in a giant unilamellar lipid-bilayer vesicle with adsorbed proteins by pulling thin cylindrical tethers. In the theoretical space, this has been supplemented with models that capture curvature dependent interaction between membrane and idealized protein particles, through free energy contributions. Many membrane proteins such as the BAR domain proteins are known to have extremely anisotropic shapes and soft interacting potentials, whereas the idealizations of protein particles explored in models have only assumed them as hard disk-like particles with curvature anisotropy. Here, we present a model of sorting of the proteins while including the effects of softness in their interaction potentials, shape anisotropy in the protein structure, and curvature anisotropy in the interactions with the membrane. This is based on a clean separation of free energy contributions from non-ideal fluid behavior of soft anisotropic particles and curvature interactions between proteins and membranes. We probe the behavior of the sorting function under limiting conditions and show that it converges to the previously derived models. In addition to this, we present a comparison of the variation in sorting ratio due to the observed variation in the shape parameter values in known membrane proteins. Finally, using published experimental data for membrane proteins, we perform fitting and derive model parameters. We observe that shape anisotropy adversely affects the sorting of proteins to a high curvature region, whereas curvature anisotropy and softer interaction between proteins favor sorting.


Asunto(s)
Membrana Dobles de Lípidos , Proteínas de la Membrana , Anisotropía , Membrana Celular/química , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Transporte de Proteínas
5.
Soft Matter ; 18(6): 1228-1238, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35043821

RESUMEN

In this article, we use a coarse-grained model of disjoint semi-flexible ring polymers to investigate computationally the spatiotemporal collective behavior of cell colonies. A ring polymer in this model is self-propelled by a motility force along the cell's polarity, which depends on its historical kinetics. Despite the repulsive interaction between the cells, a collective behavior sets in as a result of cells pushing against each other. This cooperative motion emerges as the amplitude of the motility force is increased and/or their areal density is increased. The degree of collectivity, characterized by the average cluster size, the velocity field order parameter, and the polarity field nematic order parameter, is found to increase with increasing the amplitude of the motility force and area coverage of the cells. Furthermore, the degree of alignment exhibited by the cell velocity field within a cluster is found to be stronger than that exhibited by the cell polarity. Comparison between the collective behavior of elongated cells and that of circular cells, at the same area coverage and motility force, shows that elongated cells exhibit a stronger collective behavior than circular cells, in agreement with earlier studies of self-propelled anisotropic particles. An investigation of two-cell collisions shows that while two clustered cells move in tandem, their polarities are misaligned. As such the cells push against each other while moving coherently.


Asunto(s)
Polaridad Celular , Polímeros , Cinética , Movimiento (Física)
6.
J Phys Chem B ; 126(1): 100-109, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34951303

RESUMEN

Building on the observation that chromatin compaction can be locally modulated by activity, we propose a model of in vivo chromatin as an active polymer and study its large scale conformations. In particular, we study an active mechanochemical model of chromosomal folding based on the interplay among polymer elasticity, confinement, topological constraints, and fluctuating active stresses arising from the ATP-dependent action of a variety of chromatin-associated protein machines and chromatin-remodeling proteins and their stochastic turnover. We find that activity drives the chromatin to a nonequilibrium steady state; the statistics of conformations in this nonequilibrium steady state are consistent with recent measurements on intrachromosomal contact probabilities and chromosomal compaction. The contact exponents at steady state show a systematic variation with changes in the nature of activity and the rates of turnover. The steady state configuration of the active chromatin in two dimensions resembles a space-filling Peano curve, which might have implications for the optimization of genome information storage.


Asunto(s)
Cromatina , Cromosomas , Genoma , Conformación Molecular , Polímeros
7.
J Phys Chem B ; 125(45): 12617-12626, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34730977

RESUMEN

We present the water vapor-induced swelling and the emergence of a penetrant-induced glass-like transition in the substrate-supported glassy chitosan thin films. The time evolution of the film thickness under different levels of relative humidity conditions is measured in real-time using a spectroscopic ellipsometer equipped with a humidity cell. In a dry film, the network of chitosan chains is in a glassy state, and upon exposure to water vapor, initially, the film swells by Fickian diffusion of water molecules, which triggers the structural relaxations of the chains. Under higher humidity conditions, a relatively slower evolution of thickness succeeds the initial rapid swelling due to the non-Fickian sorption of water molecules. The swelling characteristics of the polymer films are accounted for by considering the diffusion-relaxation mechanism of chains in the presence of smaller penetrant molecules. The penetrant-induced glass-like transition (Pg), where the polymer film isothermally transits from a glassy to a rubbery state, is determined for pristine and cross-linked chitosan films. Pg is determined from the abrupt change in the rate of swelling observed upon increasing the relative humidity. Chemical crosslinking has an evident influence on the penetrant-induced glass-like transition of the chitosan films. Pg was found to rise sharply for stiffer films with higher cross-linking density.


Asunto(s)
Quitosano , Difusión , Vidrio , Humedad , Polímeros
8.
Soft Matter ; 17(21): 5427-5435, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-33969850

RESUMEN

The conformational behavior and spatial organization of self-avoiding semi-flexible ring polymers, that are fully adsorbed on solid substrates, are investigated via systematic coarse-grained molecular dynamics simulations. Our results show that both conformations and spatial organization of the polymers depend strongly on their bending stiffness, κ, and on their areal number density, ρ. For ρ < ρ*, where ρ* is the overlap density, and for low values of κ, thermal fluctuations lead to weakly anisotropic instantaneous conformations of the polymers. The interplay between thermal fluctuations and polymer stiffness leads to a non-monotonic dependence of the polymers elongation on κ with a maximum elongation at some intermediate κ. Regardless of κ, the polymers elongation is almost independent of ρ for ρ ⪅ ρ*, then increases with ρ. At ρ ≈ ρ* and high κ, the almost circularly-shaped polymers self-assemble into a triangular lattice with quasi-long range order. For ρ above ρ* and high κ, crowding of the polymers leads to their self-assembly into liquid-crystalline phases. In particular, for ρ moderately above ρ* and high κ, the polymer conformations are obround and self-assemble into domains with smectic-A-like order. At higher densities, the polymer have a biconcave geometry and self-assemble into domains with smectic-C-like order.

9.
Soft Matter ; 17(4): 1016-1027, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33284936

RESUMEN

Using molecular dynamics simulations of a coarse-grained implicit solvent model, we investigate the binding of crescent-shaped nanoparticles (NPs) on tubular lipid membranes. The NPs adhere to the membrane through their concave side. We found that the binding/unbinding transition is first-order, with the threshold binding energy being higher than the unbinding threshold, and the energy barrier between the bound and unbound states at the transition that increases with increasing the NP's arclength Lnp or curvature mismatch µ = Rc/Rnp, where Rc and Rnp are the radii of curvature of the tubular membrane and the NP, respectively. Furthermore, we found that the threshold binding energy increases with increasing either Lnp or µ. NPs with curvature larger than that of the tubule (µ > 1) lie perpendicularly to the tubule's axis. However, for µ smaller than a specific arclength-dependent mismatch µ*, the NPs are tilted with respect to the tubule's axis, with the tilt angle that increases with decreasing µ. We also investigated the self-assembly of the NPs on the tubule at relatively weak adhesion strength and found that for µ > 1 and high values of Lnp, the NPs self-assemble into linear chains, and lie side-by-side. For µ < µ* and high Lnp, the NPs also self-assemble into chains, while being tilted with respect to the tubule's axis.

10.
Chem Phys Lipids ; 233: 104989, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33120231

RESUMEN

We present a review of recent results on the adhesion, wrapping and aggregation of spherical nanoparticles (NPs) on lipid membranes via molecular dynamics simulations of an implicit solvent model. We show that the degree of wrapping of small NPs, by tensionless planar membranes, can increase continuously with the adhesion strength. However, the degree of wrapping exhibits a discontinuity for large NPs or short interaction range. The adhesion of NPs to small vesicles, without volume constraint, also exhibits a discontinuity between weakly wrapped states and fully endocytosed states. Multiple spherical NPs, bound to tensionless planar membranes are either in a gas state, at weak adhesion strength, or aggregate, at relatively high adhesion strength, into a multitude of structures, corresponding to in-plane chains, out-of-plane tubes and rings, and out-of-plane single-chain tubes. Annealing scans and free energy calculations show that the gas and tube phases are the predominantly stable phases. In-plane chains are only stable for small aggregates and the out-of-plane bitubes are long-lived metastable states.


Asunto(s)
Lípidos de la Membrana/química , Nanopartículas/química , Simulación de Dinámica Molecular
11.
Phys Rev E ; 102(6-1): 062413, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33466026

RESUMEN

Changes in membrane deformation and compressibility, induced by an external electric field, are investigated using coarse-grained martini force field simulations in a salt-free environment. We observe changes in the area of the membrane above a critical electric field. Below this value, the membrane compressibility modulus is found to decrease monotonically. For higher electric fields, the membrane projected area remains constant while the net interfacial area increases, with the corresponding compressibility moduli, show the opposite behavior. We find that the mechanical parameters, surface tension and bending modulus, of a freely floating membrane in the absence of explicit ions, are unaffected by the presence of the electric field. We believe these results have a bearing on our understanding of the electroformation of uncharged lipids in a salt-free environment.

13.
Soft Matter ; 15(9): 2071-2080, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30734812

RESUMEN

The ability of proteins to sense and/or generate membrane curvature is crucial for many biological processes inside the cell. We introduce a model for the binding and unbinding of curvature inducing proteins on vesicles using Dynamic Triangulation Monte Carlo (DTMC) simulations. In our study, the interaction between membrane curvature and protein binding is characterised by the binding affinity parameter µ, which indicates the interaction strength. We demonstrate that both sensing and generation of curvature can be observed in the same system as a function of the protein binding affinity on the membrane. Our results show that at low µ values, proteins only sense membrane curvature, whereas at high µ values, they induce curvature. The transition between sensing and generation regimes is marked by a sharp change in the µ-dependence of the protein bound fraction. We present ways to quantitatively characterise these two regimes. We also observe that imposing tension on the membrane (through internal excess pressure for liposomes) extends the region of curvature sensing in the parameter space.


Asunto(s)
Membrana Celular/metabolismo , Fenómenos Mecánicos , Fenómenos Biomecánicos , Modelos Moleculares , Método de Montecarlo , Presión , Unión Proteica
14.
Soft Matter ; 15(3): 477-486, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30575844

RESUMEN

Polymeric fluids show a wealth of topological phenomena, from entanglement and reptation at microscales to orientational ordering and defect production at macroscales, which can be explained by statistical-mechanical theories. In the presence of activity, the latter must be augmented by forces that cause spontaneous chain motion and fluid flow. Here, using such augmented Langevin equations, we study active polymeric solutions and melts composed of chains of hydrodynamically interacting stresslets. In a spherical volume, contractile chains are unstable and self-knot into entangled melts at both low and high densities. Extensile chains in the same geometry form an unentangled reptating state at low densities and an entangled, coherently moving, non-reptating state at high densities. On a spherical surface, contractile chains show transitions, with increasing areal density, between isotropic, orientationally ordered and micro-phase separated states. Extensile chains in the same geometry show a transition between isotropic and nematic states. In both cases, defects in orientationally ordered states are produced athermally and without conserving topological charge. Our work reproduces the phenomenology of several recent experiments, highlights the importance of hydrodynamic interactions in active polymer fluids, and suggests non-equilibrium kinetic routes to topological structures that are otherwise difficult to obtain in equilibrium.

15.
Soft Matter ; 14(24): 5019-5030, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29855646

RESUMEN

The self-assembly of spherical nanoparticles, resulting from their adhesion on tensionless lipid membranes, is investigated through molecular dynamics simulations of a coarse-grained implicit-solvent model. Our simulations indicate that, with increasing adhesion strength, while reshaping the membrane, the nanoparticles aggregate into a sequence of self-assemblies corresponding to in-plane chains, two-row tubular (bitube) chains, annular (ring) chains, and single-row tubular (tube) chains. Annealing scans, with respect to adhesion strength, show that the transitions between the various phases are highly first-order with significant hystereses. Free energy calculations indicate that the gas and single-row tubular chains are stable over wide ranges of adhesion strength. In contrast, the in-plane chains are only stable for small aggregates of NPs, and the bitube and ring chains are long-lived metastable states over a wide range of adhesion strength.

16.
ACS Nano ; 11(10): 10025-10031, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-28898046

RESUMEN

Active colloids are not constrained by equilibrium: ballistic propulsion, superdiffusive behavior, or enhanced diffusivities have been reported for active Janus particles. At high concentrations, interactions between active colloids give rise to complex emergent behavior. Their collective dynamics result in the formation of several hundred particle-strong flocks or swarms. Here, we demonstrate significant diffusivity enhancement for colloidal objects that neither have a Janus architecture nor are at high concentrations. We employ uniformly catalyst-coated, viz. chemo-mechanically, isotropic colloids and link them into a chain to enforce proximity. Activity arises from hydrodynamic interactions between enchained colloidal beads due to reaction-induced phoretic flows catalyzed by platinum nanoparticles on the colloid surface. This results in diffusivity enhancements of up to 60% for individual chains in dilute solution. Chains with increasing flexibility exhibit higher diffusivities. Simulations accounting for hydrodynamic interactions between enchained colloids due to active phoretic flows accurately capture the experimental diffusivity. These simulations reveal that the enhancement in diffusivity can be attributed to the interplay between chain conformational fluctuations and activity. Our results show that activity can be used to systematically modulate the mobility of soft slender bodies.

17.
J Phys Chem B ; 121(18): 4873-4884, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28430444

RESUMEN

The extent of phase separation and water percolation in sulfonated membranes are the key to their performance in fuel cells. Toward this, the effect of hydration on the morphology and transport characteristics of sulfonated poly(ether ether ketone), sPEEK, membrane is investigated using atomistic molecular dynamics simulation at various hydration levels(λ: number of water molecules per sulfonate group). The evolution of local morphology is investigated using structural correlations and minimum pair distances. Transport properties are probed using mean squared displacements and diffusion coefficients. The water-sulfonate interaction in sPEEK is found to be stronger than that in Nafion, as observed in experiments. Analyses indicate the presence of narrow connected path of water and hydronium at λ = 4 and large domains, spanning half the simulation box, at λ = 15. The behavior of membrane water remains far from bulk as indicated by its diffusion coefficient. The persistence of small isolated water clusters demonstrates the extent of phase separation in sPEEK to be lesser than that in Nafion. Analyses at molecular and collective levels suggest the occurrence of a percolation transition between λ = 8 and 10, which leads to a connected network of water channels in the membrane, thereby boosting the hydronium mobility.

18.
J Chem Phys ; 146(2): 024901, 2017 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-28088142

RESUMEN

Enhanced colloidal transport beyond the limit imposed by diffusion is usually achieved through external fields. Here, we demonstrate the ballistic transport of a colloidal sphere using internal sources of energy provided by an attached active filament. The latter is modeled as a chain of chemo-mechanically active beads connected by potentials that enforce semi-flexibility and self-avoidance. The fluid flow produced by the active beads and the forces they mediate are explicitly taken into account in the overdamped equations of motion describing the colloid-filament assembly. The speed and efficiency of transport depend on the dynamical conformational states of the filament. We characterize these states using filament writhe as an order parameter and identify ones yielding maxima in speed and efficiency of transport. The transport mechanism reported here has a remarkable resemblance to the flagellar propulsion of microorganisms which suggests its utility in biomimetic systems.


Asunto(s)
Coloides/química , Transporte Biológico Activo , Microtúbulos/química , Simulación de Dinámica Molecular , Proteínas Motoras Moleculares/química , Movimiento (Física)
19.
Faraday Discuss ; 186: 265-75, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26778353

RESUMEN

Using systematic numerical simulations, we study the self-assembly of elongated curved nanoparticles on lipid vesicles. Our simulations are based on molecular dynamics of a coarse-grained implicit-solvent model of self-assembled lipid membranes with a Langevin thermostat. Here we consider only the case wherein the nanoparticle-nanoparticle interaction is repulsive, only the concave surface of the nanoparticle interacts attractively with the lipid head groups and only the outer surface of the vesicle is exposed to the nanoparticles. Upon their adhesion on the vesicle, the curved nanoparticles generate local curvature on the membrane. The resulting nanoparticle-generated membrane curvature leads in turn to nanoparticle self-assembly into two main types of aggregates corresponding to chain aggregates at low adhesion strengths and aster aggregates at high adhesion strength. The chain-like aggregates are due to the fact that at low values of adhesion strength, the nanoparticles prefer to lie parallel to each other. As the adhesion strength is increased, a splay angle between the nanoparticles is induced with a magnitude that increases with increasing adhesion strength. The origin of the splay angles between the nanoparticles is shown to be saddle-like membrane deformations induced by a tilt of the lipids around the nanoparticles. This phenomenon of membrane mediated self-assembly of anisotropically curved nanoparticles is explored for systems with varying nanoparticle number densities, adhesion strength, and nanoparticle intrinsic curvature.


Asunto(s)
Membrana Dobles de Lípidos/química , Liposomas/química , Nanopartículas/química , Anisotropía , Lípidos/química , Simulación de Dinámica Molecular
20.
Soft Matter ; 11(12): 2387-93, 2015 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-25672939

RESUMEN

Intracellular organelles are subject to a steady flux of lipids and proteins through active, energy consuming transport processes. Active fission and fusion are promoted by GTPases, e.g., Arf-Coatamer and the Rab-Snare complexes, which both sense and generate local membrane curvature. Here we investigate, through Dynamical Triangulation Monte Carlo simulations, the role that these active processes play in determining the morphology and composition segregation in closed membranes. We find that the steady state shapes obtained as a result of such active processes, bear a striking resemblance to the ramified morphologies of organelles in vivo, pointing to the relevance of nonequilibrium fission-fusion in organelle morphogenesis.


Asunto(s)
Membranas Intracelulares/química , Orgánulos/química , Membranas Intracelulares/metabolismo , Fusión de Membrana , Modelos Biológicos , Modelos Estadísticos , Método de Montecarlo , Orgánulos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...