Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 654: 123975, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38452833

RESUMEN

Targeted therapies enhance the efficacy of tumour screening and management while lowering side effects. Multiple tumours, including liver cancer, exhibit elevated levels of folate receptor expression. This research attempted to develop surface-functionalised bosutinib cubosomes against hepatocellular carcinoma. The novelty of this work is the anti-hepatic action of bosutinib (BST) and folic acid-modified bosutinib cubosomes (BSTMF) established through proto-oncogene tyrosine-protein kinase (SrC)/ focal adhesion kinase(FAK), reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and cell cytotoxicity. Later, the in-vivo pharmacokinetics of BSTMF were determined for the first time. The strong affinity of folic acid (FA) for folate receptors allows BSTMF to enter cells via FA receptor-mediated endocytosis. The particle size of the prepared BSTMF was 188.5 ± 2.25 nm, and its zeta potential was -20.19 ± 2.01 mV, an encapsulation efficiency of 90.31 ± 3.15 %, and a drug release rate of 76.70 ± 2.10 % for 48 h. The surface architecture of BSTMF was identified using transmission electron microscopy (TEM) and Atomic force microscopy (AFM). Cell-line studies demonstrated that BSTMF substantially lowered the viability of Hep G2 cells compared to BST and bosutinib-loaded cubosomes (BSTF). BSTMF demonstrated an elevated BST concentration in tumour tissue than in other organs and also displayed superior pharmacokinetics, implying that they hold potential against hepatic cancers. This is the first study to show that BSTMF may be effective against liver cancer by targeting folate receptors and triggering SrC/FAK-dependent apoptotic pathways. Multiple parameters demonstrated that BSTMF enhanced anticancer targeting, therapeutic efficacy, and safety in NDEA-induced hepatocellular carcinoma.


Asunto(s)
Compuestos de Anilina , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Nitrilos , Quinolinas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Ácido Fólico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Tamaño de la Partícula
2.
J Transl Med ; 22(1): 204, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409136

RESUMEN

BACKGROUND: Prior evidence demonstrated that Regulator of G protein Signaling 6 (RGS6) translocates to the nucleolus in response to cytotoxic stress though the functional significance of this phenomenon remains unknown. METHODS: Utilizing in vivo gene manipulations in mice, primary murine cardiac cells, human cell lines and human patient samples we dissect the participation of a RGS6-nucleolin complex in chemotherapy-dependent cardiotoxicity. RESULTS: Here we demonstrate that RGS6 binds to a key nucleolar protein, Nucleolin, and controls its expression and activity in cardiomyocytes. In the human myocyte AC-16 cell line, induced pluripotent stem cell derived cardiomyocytes, primary murine cardiomyocytes, and the intact murine myocardium tuning RGS6 levels via overexpression or knockdown resulted in diametrically opposed impacts on Nucleolin mRNA, protein, and phosphorylation.RGS6 depletion provided marked protection against nucleolar stress-mediated cell death in vitro, and, conversely, RGS6 overexpression suppressed ribosomal RNA production, a key output of the nucleolus, and triggered death of myocytes. Importantly, overexpression of either Nucleolin or Nucleolin effector miRNA-21 counteracted the pro-apoptotic effects of RGS6. In both human and murine heart tissue, exposure to the genotoxic stressor doxorubicin was associated with an increase in the ratio of RGS6/Nucleolin. Preventing RGS6 induction via introduction of RGS6-directed shRNA via intracardiac injection proved cardioprotective in mice and was accompanied by restored Nucleolin/miRNA-21 expression, decreased nucleolar stress, and decreased expression of pro-apoptotic, hypertrophy, and oxidative stress markers in heart. CONCLUSION: Together, these data implicate RGS6 as a driver of nucleolar stress-dependent cell death in cardiomyocytes via its ability to modulate Nucleolin. This work represents the first demonstration of a functional role for an RGS protein in the nucleolus and identifies the RGS6/Nucleolin interaction as a possible new therapeutic target in the prevention of cardiotoxicity.


Asunto(s)
MicroARNs , Proteínas RGS , Animales , Humanos , Ratones , Cardiotoxicidad , MicroARNs/genética , Miocitos Cardíacos , Nucleolina , Proteínas RGS/genética , Transducción de Señal/fisiología
3.
J Biomol Struct Dyn ; : 1-12, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37874077

RESUMEN

Azaheterocycles are three-membered rings, known as aziridines, that occur naturally and have pharmaceutical applications.These compounds are present as several secondary metabolites produced by plants and microorganisms.Recent studies have demonstrated the effectiveness of aziridine derivatives (N-H/N-Me) as anticancer agents.We synthesized 18 compounds containing an N-Me enone aziridine group, the chemistry of which has been previously published. However, these compounds have drug-likeness properties; therefore, we aimed to demonstrate their drug-like properties using in silico and in vitro investigations.The molecular structures of the compounds were optimized using density functional theory (DFT). The ADMET parameters of the derivatives were calculated using SwissADME and PreADMET. Additionally, these derivatives were evaluated for their ability to bind to caspase-3 and caspase-9 and then subjected to molecular docking. The lead chemical AY128 maintained stable complexes with target proteins during molecular dynamics simulations, as evidenced by the root mean square deviation (RMSD) and root mean square fluctuation (RMSF) parameters. In vitro cytotoxicity and ELISA tests showed that the novel aziridine derivatives, especially AY128, had strong anticancer activity against HepG2 hepatocellular carcinoma cells.Our study suggests that AY128 may be a potential drug candidate for hepatocellular carcinoma through the caspase-3 and caspase-9-dependent apoptotic pathways.Communicated by Ramaswamy H. Sarma.

4.
Cell Mol Life Sci ; 80(9): 255, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37589751

RESUMEN

Cardiotoxicity remains a major limitation in the clinical utility of anthracycline chemotherapeutics. Regulator of G-protein Signaling 7 (RGS7) and inflammatory markers are up-regulated in the hearts of patients with a history of chemotherapy particularly those with reduced left-ventricular function. RGS7 knockdown in either the murine myocardium or isolated murine ventricular cardiac myocytes (VCM) or cultured human VCM provided marked protection against doxorubicin-dependent oxidative stress, NF-κB activation, inflammatory cytokine production, and cell death. In exploring possible mechanisms causally linking RGS7 to pro-inflammatory signaling cascades, we found that RGS7 forms a complex with acetylase Tip60 and deacetylase sirtuin 1 (SIRT1) and controls the acetylation status of the p65 subunit of NF-κB. In VCM, the detrimental impact of RGS7 could be mitigated by inhibiting Tip60 or activating SIRT1, indicating that the ability of RGS7 to modulate cellular acetylation capacity is critical for its pro-inflammatory actions. Further, RGS7-driven, Tip60/SIRT1-dependent cytokines released from ventricular cardiac myocytes and transplanted onto cardiac fibroblasts increased oxidative stress, markers of transdifferentiation, and activity of extracellular matrix remodelers emphasizing the importance of the RGS7-Tip60-SIRT1 complex in paracrine signaling in the myocardium. Importantly, while RGS7 overexpression in heart resulted in sterile inflammation, fibrotic remodeling, and compromised left-ventricular function, activation of SIRT1 counteracted the detrimental impact of RGS7 in heart confirming that RGS7 increases acetylation of SIRT1 substrates and thereby drives cardiac dysfunction. Together, our data identify RGS7 as an amplifier of inflammatory signaling in heart and possible therapeutic target in chemotherapeutic drug-induced cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Proteínas RGS , Humanos , Animales , Ratones , Acetilación , FN-kappa B , Sirtuina 1/genética , Arritmias Cardíacas , Miocitos Cardíacos , Proteínas RGS/genética
5.
FASEB J ; 37(8): e23064, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37440271

RESUMEN

Off target damage to vital organ systems is an unfortunate side effect of cancer chemotherapy and remains a major limitation to the use of these essential drugs in the clinic. Despite decades of research, the mechanisms conferring susceptibility to chemotherapy driven cardiotoxicity and hepatotoxicity remain unclear. In the livers of patients with a history of chemotherapy, we observed a twofold increase in expression of G protein regulator RGS7 and a corresponding decrease in fellow R7 family member RGS11. Knockdown of RGS7 via introduction of RGS7 shRNA via tail vein injection decreased doxorubicin-induced hepatic collagen and lipid deposition, glycogen accumulation, and elevations in ALT, AST, and triglycerides by approximately 50%. Surprisingly, a similar result could be achieved via introduction of RGS7 shRNA directly to the myocardium without impacting RGS7 levels in the liver directly. Indeed, doxorubicin-treated cardiomyocytes secrete the endocrine factors transforming growth factor ß1 (TGFß1) and TGFß superfamily binding protein follistatin-related protein 1 (FSTL1). Importantly, RGS7 overexpression in the heart was sufficient to recapitulate the impacts of doxorubicin on the liver and inhibition of TGFß1 signaling with the receptor blocker GW788388 ameliorated the effect of cardiac RGS7 overexpression on hepatic fibrosis, steatosis, oxidative stress, and cell death as well as the resultant elevation in liver enzymes. Together these data demonstrate that RGS7 controls both the release of TGFß1 from the heart and the profibrotic and pro-oxidant actions of TGFß1 in the liver and emphasize the functional significance of endocrine cardiokine signaling in the pathogenesis of chemotherapy drive multiorgan damage.


Asunto(s)
Proteínas Relacionadas con la Folistatina , Proteínas RGS , Humanos , Proteínas RGS/genética , Proteínas RGS/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Transducción de Señal/fisiología , Proteínas Portadoras/metabolismo , Hígado/metabolismo , Doxorrubicina/efectos adversos , Proteínas Relacionadas con la Folistatina/metabolismo
6.
Pharm Nanotechnol ; 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37231760

RESUMEN

Exosomes are intrinsic membrane-based vesicles that play a key role in both normal and pathological processes. Since their discovery, exosomes have been investigated as viable drug delivery systems and clinical indicators because of their magnitude and effectiveness in delivering biological components to targeted cells. Exosome characteristics are biocompatible, prefer tumor recruitment, have tunable targeting efficiency, and are stable, making them outstanding and eye-catching medication delivery systems for cancer and other disorders. There is great interest in using cell-released tiny vesicles that activate the immune system in the age of the fast development of cancer immunotherapy. Exosomes, which are cell-derived nanovesicles, have a lot of potential for application in cancer immunotherapy due to their immunogenicity and molecular transfer function. More significantly, exosomes can transfer their cargo to specified cells and so affect the phenotypic and immune-regulation capabilities of those cells. In this article, we summarize exosomes' biogenesis, isolation techniques, drug delivery, applications, and recent clinical updates. The use of exosomes as drug-delivery systems for small compounds, macromolecules, and nucleotides has recently advanced. We have tried to give holistic and exhaustive pieces of information showcasing current progress and clinical updates of exosomes.

7.
Int Immunopharmacol ; 119: 110236, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37148772

RESUMEN

Colorectal cancer (CRC) is currently recognized as the third most prevalent cancer worldwide. Vinpocetine is a synthetic derivative of the vinca alkaloid vincamine. It has been found effective in ameliorating the growth and progression of cancerous cells. However, its pharmacological effect on colon damage remains elusive. Hence, in this study, we have shown the role of vinpocetine in DMH-induced colon carcinogenesis. At first, male albino Wistar rats were administered with DMH consistently for four weeks to induce pre-neoplastic colon damage. Afterward, animals were treated with vinpocetine (4.2 and 8.4 mg/kg/day p.o.) for 15 days. Serum samples were collected to assess the physiological parameters, including ELISA and NMR metabolomics. Colon from all the groups was collected and processed separately for histopathology and western blot analysis. Vinpocetine attenuated the altered plasma parameters; lipid profile and showed anti-proliferative action as evidenced by suppressed COX-2 stimulation and decreased levels of IL-1ß, IL-2, IL-6, and IL-10. Vinpocetine is significantly effective in preventing CRC which may be associated with its anti-inflammatory and antioxidant potential. Accordingly, vinpocetine could serve as a potential anticancer agent for CRC treatment and thus be considered for future clinical and therapeutic research.


Asunto(s)
Antineoplásicos , Alcaloides de la Vinca , Ratas , Masculino , Animales , Citocinas/farmacología , Alcaloides de la Vinca/uso terapéutico , Alcaloides de la Vinca/farmacología , Colon/patología , Antineoplásicos/farmacología , Ratas Wistar
8.
Mini Rev Med Chem ; 23(1): 24-32, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34856898

RESUMEN

PCSK9 is a strongly expressed protein in the liver and brain that binds to the LDLR and regulates cholesterol in the liver effectively. Other receptors with which it interacts include VLDLR, LRP1, ApoER2, and OLR1. PCSK9 gain-of-function results in lysosomal degradation of these receptors, which may result in hyperlipidemia. PCSK9 deficiency results in a lower amount of cholesterol, which reduces cholesterol's accessibility to cancer cells. PCSK9 regulates several proteins and signaling pathways in cancer, including JNK, NF-κВ, and the mitochondrial-mediated apoptotic pathway. In the liver, breast, lungs, and colon tissue, PCSK9 initiates and facilitates cancer development, while in prostate cancer cells, it induces apoptosis. PCSK9 has a significant impact on brain cancer, promoting cancer cell survival by manipulating the mitochondrial apoptotic pathway and exhibiting apoptotic activity in neurons by influencing the NF-κВ, JNK, and caspase-dependent pathways. The PCSK9 impact in cancer at different organs is explored in this study, as well as the targeted signaling mechanisms involved in cancer growth. As a result, these signaling mechanisms may be aimed for the development and exploration of anti-cancer drugs in the immediate future.


Asunto(s)
Neoplasias Encefálicas , Proproteína Convertasa 9 , Masculino , Humanos , Hígado , Apoptosis
9.
Proc Natl Acad Sci U S A ; 120(1): e2213537120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574707

RESUMEN

Dose-limiting cardiotoxicity remains a major limitation in the clinical use of cancer chemotherapeutics. Here, we describe a role for Regulator of G protein Signaling 7 (RGS7) in chemotherapy-dependent heart damage, the demonstration for a functional role of RGS7 outside of the nervous system and retina. Though expressed at low levels basally, we observed robust up-regulation of RGS7 in the human and murine myocardium following chemotherapy exposure. In ventricular cardiomyocytes (VCM), RGS7 forms a complex with Ca2+/calmodulin-dependent protein kinase (CaMKII) supported by key residues (K412 and P391) in the RGS domain of RGS7. In VCM treated with chemotherapeutic drugs, RGS7 facilitates CaMKII oxidation and phosphorylation and CaMKII-dependent oxidative stress, mitochondrial dysfunction, and apoptosis. Cardiac-specific RGS7 knockdown protected the heart against chemotherapy-dependent oxidative stress, fibrosis, and myocyte loss and improved left ventricular function in mice treated with doxorubicin. Conversely, RGS7 overexpression induced fibrosis, reactive oxygen species generation, and cell death in the murine myocardium that were mitigated following CaMKII inhibition. RGS7 also drives production and release of the cardiokine neuregulin-1, which facilitates paracrine communication between VCM and neighboring vascular endothelial cells (EC), a maladaptive mechanism contributing to VCM dysfunction in the failing heart. Importantly, while RGS7 was both necessary and sufficient to facilitate chemotherapy-dependent cytotoxicity in VCM, RGS7 is dispensable for the cancer-killing actions of these same drugs. These selective myocyte-intrinsic and myocyte-extrinsic actions of RGS7 in heart identify RGS7 as an attractive therapeutic target in the mitigation of chemotherapy-driven cardiotoxicity.


Asunto(s)
Antineoplásicos , Cardiotoxicidad , Proteínas RGS , Animales , Humanos , Ratones , Antineoplásicos/efectos adversos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiotoxicidad/metabolismo , Células Endoteliales/metabolismo , Fibrosis , Miocitos Cardíacos/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo
10.
Environ Dev Sustain ; : 1-33, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36373028

RESUMEN

Recently, financial service systems have had essential impacts on public policies, the economic performance of firms, and all forms of industry and commerce. These systems play an important role in determining whether a society (which includes a wide range of members, from governmental institutions to individual consumers) has been successfully considered an environmentally sustainable path. The literature shows that the people who work in the financial sector are mostly unaware of the pressure and rationale behind sustainable development and its bearing on their work; however, those who work in the relevant research and policy areas generally ignore the vitality of the role of the financial sector in such a development. The study of interval-valued Pythagorean fuzzy sets (IVPFSs) indicates an urge for a decision approach to implementing the available information for rational decisions properly. Inspired by the advantage of IVPFSs, an extended decision methodology called the IVPF rank-sum weighting method (RSWM)-double normalization-based multi-aggregation (DNMA) is discussed. In this line, the IVPF-RSWM is applied to find the subjective weights of digital transformation challenges of sustainable financial service systems (SFSS), and the DNMA framework is developed to obtain the preferences of SFSSs in the banking sector. A case study to assess the main digital transformation challenges in SFSSs of the banking sector is undertaken. Further, comparison and sensitivity investigations are taken to illustrate the advantage of the presented approach.

11.
Front Pharmacol ; 13: 1021867, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386226

RESUMEN

Hepatocellular carcinoma (HCC) is a common malignancy which affects a substantial number of individuals all over the globe. It is the third primary cause of death among persons with neoplasm and has the fifth largest mortality rate among men and the seventh highest mortality rate among women. Dalbergin (DL) is described to be effective in breast cancer via changing mRNA levels of apoptosis-related proteins. DL belongs to neoflavonoids, a drug category with low solubility and poor bioavailability. We created a synthetic version of this naturally occurring chemical, DL, and then analyzed it using 1H-NMR, 13C-NMR, and LC-MS. We also made PLGA nanoparticles and then coated them with galactose. The design of experiment software was used to optimize DL-loaded galactose-modified PLGA nanoparticles. The optimized DL-nanoformulations (DLF) and DL-modified nanoformulations (DLMF) were analyzed for particle size, polydispersity index, shape, and potential interactions. In-vitro experiments on liver cancer cell lines (HepG2) are used to validate the anti-proliferative efficacy of the modified DLMF. The in-vitro research on HepG2 cell lines also demonstrated cellular accumulation of DLF and DLMF by FITC level. The in-vitro result suggested that DLMF has high therapeutic effectiveness against HCC. In-vivo pharmacokinetics and bio-distribution experiments revealed that DLMF excelled pristine DL in terms of pharmacokinetic performance and targeted delivery, which is related to galactose's targeting activity on the asialoglycoprotein receptor (ASGPR) in hepatic cells. Additionally, we performed an in-silico study of DL on caspase 3 and 9 proteins, and the results were found to be -6.7 kcal/mol and -6.6 kcal/mol, respectively. Our in-silico analysis revealed that the DL had strong apoptotic properties against HCC.

12.
Redox Biol ; 57: 102487, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36228439

RESUMEN

Dose limiting cardiotoxicity remains a major limiting factor in the clinical use of several cancer chemotherapeutics including anthracyclines and the antimetabolite 5-fluorouracil (5-FU). Prior work has demonstrated that chemotherapeutics increase expression of R7 family regulator of G protein signaling (RGS) protein-binding partner Gß5, which drives myocyte cytotoxicity. However, though several R7 family members are expressed in heart, the exact role of each protein in chemotherapy driven heart damage remains unclear. Here, we demonstrate that RGS11, downregulated in the human heart following chemotherapy exposure, possesses potent anti-apoptotic actions, in direct opposition to the actions of fellow R7 family member RGS6. RGS11 forms a direct complex with the apoptotic kinase CaMKII and stress responsive transcription factor ATF3 and acts to counterbalance the ability of CaMKII and ATF3 to trigger oxidative stress, mitochondrial dysfunction, cell death, and release of the cardiokine neuregulin-1 (NRG1), which mediates pathological intercommunication between myocytes and endothelial cells. Doxorubicin triggers RGS11 depletion in the murine myocardium, and cardiac-specific OE of RGS11 decreases doxorubicin-induced fibrosis, myocyte hypertrophy, apoptosis, oxidative stress, and cell loss and aids in the maintenance of left ventricular function. Conversely, RGS11 knockdown in heart promotes cardiac fibrosis associated with CaMKII activation and ATF3/NRG1 induction. Indeed, inhibition of CaMKII largely prevents the fibrotic remodeling resulting from cardiac RGS11 depletion underscoring the functional importance of the RGS11-CaMKII interaction in the pathogenesis of cardiac fibrosis. These data describe an entirely new role for RGS11 in heart and identify RGS11 as a potential new target for amelioration of chemotherapy-induced cardiotoxicity.

13.
Int J Pharm ; 622: 121848, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35613653

RESUMEN

This study aimed at the development of hyaluronic acid-functionalised imatinib mesylate cubosomes (HA-IM-CBs) that might be useful in CD44 targeting against hepatic cancer. The HA-IM-CBs had a 130.7 ±â€¯2.92 nm particle size, -31.40 ±â€¯2.76 mV zeta potential, and 76.14 ±â€¯2.69% release. The architecture of HA-IM-CBs was confirmed using HR-TEM and AFM. When compared to plain IM and IM-CBs, in vitro experiments revealed that HA-IM-CBs outperformed by significantly reducing cell viability. DAPI staining and ROS corroborated the apoptotic effects. Biodistribution and Pharmacokinetics studies showedthat HA-IM-CBs exhibit a higher drug concentration in tumour tissue and better pharmacokinetic activity. This is the first study to show that HA-IM-CBs had CD44 targeting activity against HCC. CD44 regulates apoptosis via Bcl-2 family proteins and caspases, which interact with HA. Higher levels of e-NOS, BAD, BAX, and Cyt C and lower expressions of Bcl-xl, i-NOS, and Bcl-2 demonstrated the anti-HCC potential of HA-IM-CBs in qrt-PCR investigations. The remarkable therapeutic potential of HA-IM-CBs began with substantial stimulation of CD44 regulated caspase-mediated mitochondrial apoptotic pathway, accountable for their anti-HCC activity. The perturbed metabolites are restored to acceptable levels as indicated by metabolomic studies (1H NMR). Interestingly, the antineoplastic effect of HA-IM-CBs was proven to be potentially valuable against HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Humanos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/química , Mesilato de Imatinib/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Proteínas Proto-Oncogénicas c-bcl-2 , Distribución Tisular
14.
BBA Adv ; 2: 100046, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37082584

RESUMEN

Fluvoxamine's (FLX's) anticancer potential was investigated in pre-clinical research utilizing a DMH-induced colorectal cancer (CRC) rat model. qRT-PCR and immunoblotting validated the mechanistic investigation. The CRC condition was induced in response to COX-2 and IL-6, however, following FLX therapy, the condition returned to normal. FLX's anti-CRC potential may be attributable to COX-2 inhibition since this molecular activity was more apparent for COX-2 than IL-6. FLX repaired the altered metabolites linked to CRC rats, according to 1H-NMR analysis. FLX was shown to be similar to 5-FU in terms of tumor protection, which may be useful in future medication development.

15.
Arch Physiol Biochem ; 128(2): 547-557, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31852265

RESUMEN

Present study is aimed at transdermal delivery of colchicine-loaded chitosan nanoparticles. The nanoformulations were prepared utilising spontaneous emulsification method and optimised through 23 factorial designs. The optimised formulation (CHNP-OPT) displayed an average particle size of 294 ± 3.75 nm, entrapment efficiency 92.89 ± 1.1% and drug content 83.45 ± 2.5%, respectively. In vitro release study demonstrated 89.34 ± 2.90% release over a period of 24 h. Further, CHNP-OPT incorporated into HPMC-E4M (hydroxypropyl methylcellulose) to form transdermal gel. CHNPgel displayed 74.65 ± 1.90% permeation and stability over a period of 90 days. The anti-gout potential of CHNPgel formulation was evaluated in vivo against monosodium urate (MSU) crystal-induced gout in animal model. There was significant reduction in uric acid level, during MSU administration, when compared with the conventional gel of colchicine. The enhanced therapeutic potential was witnessed through X-ray. The study revealed that colchicine-loaded CHNPgel proved their supremacy over plain colchicine and can be an efficient delivery system for gout treatment.


Asunto(s)
Quitosano , Gota , Nanopartículas , Animales , Quitosano/uso terapéutico , Colchicina/uso terapéutico , Modelos Animales de Enfermedad , Gota/inducido químicamente , Gota/tratamiento farmacológico , Ácido Úrico
16.
Arch Physiol Biochem ; 128(3): 836-848, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32141770

RESUMEN

The effectiveness of betulinic acid (B) and PLGA loaded nanoparticles of B (Bnp) against hepatocellular carcinoma (HCC) was established and reported earlier. In continuation of our previous report, the present study described the molecular mechanisms of their antineoplastic responses. In this context, the antineoplastic properties of both B and Bnp were evaluated on DEN-induced HCC rat model. The quantitative real-time polymerase chain reaction and western blot analyses revealed that HCC was developed through lower expressions of e-NOS, BAX, BAD, Cyt C and higher expressions of i-NOS, Bcl-xl, Bcl-2. B and Bnp normalised the expressions of these apoptogenic markers. Particularly, both activated i-NOS and e-NOS mediated Bcl-2 family proteins→CytC→Caspase 3 and 9 signalling cascades. The 1H-NMR-based metabolomics study also demonstrated that the perturbed metabolites in DEN-induced rat serum restored to the normal level following both treatments. Moreover, the antineoplastic potential of Bnp was found to be comparable with the marketed product, 5-flurouracil.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Triterpenos Pentacíclicos , Animales , Antineoplásicos/farmacología , Apoptosis , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Nanopartículas/química , Triterpenos Pentacíclicos/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Proteínas Proto-Oncogénicas c-bcl-2/genética , Ratas , Ácido Betulínico
17.
Mini Rev Med Chem ; 22(4): 629-639, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34353252

RESUMEN

Lung Cancer (LC) is the leading cause of cancer deaths worldwide. Recent research has also shown LC as a genomic disease, causing somatic mutations in the patients. Tests related to mutational analysis and genome profiles have lately expanded significantly in the genetics/genomics field of LC. This review summarizes the current knowledge about different signalling pathways of LC based on the clinical impact of molecular targets. It describes the main molecular pathways and changes involved in the development, progression, and cellular breakdown of LC and molecular changes. This review focuses on approved and targeted experimental therapies such as immunotherapy and clinical trials that examine the different targeted approaches to treating LC. We aim to clarify the differences in the extent of various genetic mutations in DNA for LC patients. Targeted molecular therapies for LC can be continued with advanced racial differences in genetic changes, which have a significant impact on the choice of drug treatment and our understanding of the profile of drug susceptibility/ resistance. The most relevant genes described in this review are EGFR, KRAS, MET, BRAF, PIK3CA, STK11, ERBB3, PTEN, and RB1. Combined research efforts in this field are required to understand the genetic difference in LC outcomes in the future.


Asunto(s)
Carcinoma , Neoplasias Pulmonares , Humanos , Pulmón/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Terapia Molecular Dirigida , Mutación
18.
Complex Intell Systems ; 7(4): 1869-1876, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804769

RESUMEN

Due to apparent flexibility of Intuitionistic Fuzzy Set (IFS) concepts in dealing with the imprecision or uncertainty, these are proving to be quite useful in many application areas for a more human consistent reasoning under imperfectly defined facts and imprecise knowledge. In this paper, we apply notions of entropy and intuitionistic fuzzy sets to present a new fuzzy decision-making approach called intuitionistic fuzzy entropy measure for selection and ranking the suppliers with respect to the attributes. An entropy-based model is formulated and applied to a real case study aiming to examine the rankings of suppliers. Furthermore, the weights for each alternative, with respect to the criteria, are calculated using intuitionistic fuzzy entropy measure. The supplier with the highest weight is selected as the best alternative. This proposed model helps the decision-makers in better understanding of the weight of each criterion without relying on the mere expertise.

19.
J Exp Orthop ; 8(1): 61, 2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34392435

RESUMEN

PURPOSE: One of the major contributors to the progression of knee osteoarthritis (OA) is the condition of loading in the knee joint. Innovatively designed load-sharing implants may be effective in terms of reducing joint load. The effects of these implants on contact joint mechanics can be evaluated through cadaver experiments. In this work, a case study is carried out with cadaver knee specimens to carry out a preliminary investigation into a novel load-sharing knee implant, in particular to study the surgical procedures required for attachment, and to determine the contact pressures in the joint with and without the implant. METHODS: Contact pressure in the tibiofemoral joint was measured using pressure mapping sensors, with and without the implant, and radiographs were conducted to investigate the influence of the implant on joint space. The implant was designed from a 3D model of the specimen reconstructed by segmenting MR images of the knee, and it was manufactured by CNC machining. RESULTS: It was observed that attachment of the implant does not affect the geometry of the hard/soft tissues. Radiographs showed that the implant led to an increase in the joint space on the medial side. Contact pressure measurements showed that the implant reduced the load on the medial side by approximately 18% under all tested loading conditions. By increasing the load from 800 to 1600 N, the percentage of load reduction in the lateral side was decreased by 8%. After applying 800, 1200, and 1600 N load it was observed that the peak contact pressures were 3.7, 4.6, and 5.5 MPa, respectively. CONCLUSIONS: This new knee implant shows some promise as a treatment for OA, through its creation of a conducive loading environment in the knee joint, without sacrificing or damaging any of the hard or soft tissues. This device could be as effective as, for example, the Atlas® system, but without some complications seen with other devices; this would need to be validated through similar results being observed in an appropriate in vivo study.

20.
Redox Biol ; 43: 101965, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33933881

RESUMEN

Excessive ingestion of the common analgesic acetaminophen (APAP) leads to severe hepatotoxicity. Here we identify G protein ß5 (Gß5), elevated in livers from APAP overdose patients, as a critical regulator of cell death pathways and autophagic signaling in APAP-exposed liver. Liver-specific knockdown of Gß5 in mice protected the liver from APAP-dependent fibrosis, cell loss, oxidative stress, and inflammation following either acute or chronic APAP administration. Conversely, overexpression of Gß5 in liver was sufficient to drive hepatocyte dysfunction and loss. In hepatocytes, Gß5 depletion ameliorated mitochondrial dysfunction, allowed for maintenance of ATP generation and mitigated APAP-induced cell death. Further, Gß5 knockdown also reversed impacts of APAP on kinase cascades (e.g. ATM/AMPK) signaling to mammalian target of rapamycin (mTOR), a master regulator of autophagy and, as a result, interrupted autophagic flux. Though canonically relegated to nuclear DNA repair pathways, ATM also functions in the cytoplasm to control cell death and autophagy. Indeed, we now show that Gß5 forms a direct, stable complex with the FAT domain of ATM, important for autophosphorylation-dependent kinase activation. These data provide a viable explanation for these novel, G protein-independent actions of Gß5 in liver. Thus, Gß5 sits at a critical nexus in multiple pathological sequelae driving APAP-dependent liver damage.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Proteínas de Unión al GTP/metabolismo , Hepatocitos , Humanos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...