Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Behav Neurosci ; 15: 722780, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34707486

RESUMEN

Astronauts during interplanetary missions will be exposed to galactic cosmic radiation, including charged particles like 56Fe. Most preclinical studies with mature, "astronaut-aged" rodents suggest space radiation diminishes performance in classical hippocampal- and prefrontal cortex-dependent tasks. However, a rodent cognitive touchscreen battery unexpectedly revealed 56Fe radiation improves the performance of C57BL/6J male mice in a hippocampal-dependent task (discrimination learning) without changing performance in a striatal-dependent task (rule-based learning). As there are conflicting results on whether the female rodent brain is preferentially injured by or resistant to charged particle exposure, and as the proportion of female vs. male astronauts is increasing, further study on how charged particles influence the touchscreen cognitive performance of female mice is warranted. We hypothesized that, similar to mature male mice, mature female C57BL/6J mice exposed to fractionated whole-body 56Fe irradiation (3 × 6.7cGy 56Fe over 5 days, 600 MeV/n) would improve performance vs. Sham conditions in touchscreen tasks relevant to hippocampal and prefrontal cortical function [e.g., location discrimination reversal (LDR) and extinction, respectively]. In LDR, 56Fe female mice more accurately discriminated two discrete conditioned stimuli relative to Sham mice, suggesting improved hippocampal function. However, 56Fe and Sham female mice acquired a new simple stimulus-response behavior and extinguished this acquired behavior at similar rates, suggesting similar prefrontal cortical function. Based on prior work on multiple memory systems, we next tested whether improved hippocampal-dependent function (discrimination learning) came at the expense of striatal stimulus-response rule-based habit learning (visuomotor conditional learning). Interestingly, 56Fe female mice took more days to reach criteria in this striatal-dependent rule-based test relative to Sham mice. Together, our data support the idea of competition between memory systems, as an 56Fe-induced decrease in striatal-based learning is associated with enhanced hippocampal-based learning. These data emphasize the power of using a touchscreen-based battery to advance our understanding of the effects of space radiation on mission critical cognitive function in females, and underscore the importance of preclinical space radiation risk studies measuring multiple cognitive processes, thereby preventing NASA's risk assessments from being based on a single cognitive domain.

2.
Front Neurosci ; 14: 612749, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488351

RESUMEN

Mild traumatic brain injuries (mTBIs) are prevalent worldwide. mTBIs can impair hippocampal-based functions such as memory and cause network hyperexcitability of the dentate gyrus (DG), a key entry point to hippocampal circuitry. One candidate for mediating mTBI-induced hippocampal cognitive and physiological dysfunction is injury-induced changes in the process of DG neurogenesis. There are conflicting results on how TBI impacts the process of DG neurogenesis; this is not surprising given that both the neurogenesis process and the post-injury period are dynamic, and that the quantification of neurogenesis varies widely in the literature. Even within the minority of TBI studies focusing specifically on mild injuries, there is disagreement about if and how mTBI changes the process of DG neurogenesis. Here we utilized a clinically relevant rodent model of mTBI (lateral fluid percussion injury, LFPI), gold-standard markers and quantification of the neurogenesis process, and three time points post-injury to generate a comprehensive picture of how mTBI affects adult hippocampal DG neurogenesis. Male C57BL/6J mice (6-8 weeks old) received either sham surgery or mTBI via LFPI. Proliferating cells, neuroblasts/immature neurons, and surviving cells were quantified via stereology in DG subregions (subgranular zone [SGZ], outer granule cell layer [oGCL], molecular layer, and hilus) at short-term (3 days post-injury, dpi), intermediate (7 dpi), and long-term (31 dpi) time points. The data show this model of mTBI induces transient, sequential increases in ipsilateral SGZ/GCL proliferating cells, neuroblasts/immature neurons, and surviving cells which is suggestive of mTBI-induced neurogenesis. In contrast to these ipsilateral hemisphere findings, measures in the contralateral hemisphere were not increased in key neurogenic DG subregions after LFPI. Our work in this mTBI model is in line with most literature on other and more severe models of TBI in showing TBI stimulates the process of DG neurogenesis. However, as our DG data in mTBI provide temporal, subregional, and neurogenesis-stage resolution, these data are important to consider in regard to the functional importance of TBI-induction of the neurogenesis process and future work assessing the potential of replacing and/or repairing DG neurons in the brain after TBI.

3.
Gene ; 575(2 Pt 1): 339-52, 2016 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-26343794

RESUMEN

The α4 Na,K-ATPase is a sperm-specific protein essential for sperm motility and fertility yet little is known about the mechanisms that regulate its expression in germ cells. Here, the potential involvement of DNA methylation in regulating the expression of this sperm-specific protein is explored. A single, intragenic CpG island (Mα4-CGI) was identified in the gene encoding the mouse α4 Na,K-ATPase (Atp1a4), which displayed reduced methylation in mouse sperm (cells that contain α4) compared to mouse kidney (tissue that lacks α4 expression). Unlike the intragenic CGI, the putative promoter (the -700 to +200 region relative to the transcriptional start site) of Atp1a4 did not show differential methylation between kidney and sperm nevertheless it did drive methylation-dependent reporter gene expression in the male germ cell line GC-1spg. Furthermore, treatment of GC-1spg cells with 5-aza2-deoxycytidine led to upregulation of the α4 transcript and decreased methylation of both the Atp1a4 promoter and the Mα4-CGI. In addition, Atp1a4 expression in mouse embryonic stem cells deficient in DNA methyltransferases suggests that both maintenance and de novo methylation are involved in regulating its expression. In an attempt to define the regulatory function of the Mα4-CGI, possible roles of the Mα4-CGI in regulating Atp1a4 expression via methylation-dependent transcriptional elongation inhibition in somatic cells and via its ability to repress promoter activity in germ cells were uncovered. In all, our data suggests that both the promoter and the intragenic CGI could combine to provide multiple modes of regulation for optimizing the Atp1a4 expression level in a cell type-specific manner.


Asunto(s)
Metilación de ADN/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Regiones Promotoras Genéticas/fisiología , ATPasa Intercambiadora de Sodio-Potasio/biosíntesis , Espermatozoides/enzimología , Testículo/enzimología , Animales , Islas de CpG/fisiología , Masculino , Ratones , Especificidad de Órganos/fisiología , ATPasa Intercambiadora de Sodio-Potasio/genética , Espermatozoides/citología , Testículo/citología
4.
Gene ; 561(2): 235-48, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25701605

RESUMEN

The human NHEDC1 (hNHEDC1) protein is thought to be essential for sperm motility and fertility however the mechanisms regulating its gene expression are largely unknown. In this study we have identified multiple DNA regulatory elements in the 5' end of the gene encoding hNHEDC1 (SLC9B1) and have explored the role that DNA methylation at these elements plays in the regulation of its expression. We first show that the full-length hNHEDC1 protein is testis-specific for the tissues that we tested and that it localizes to the cells of the seminiferous tubules. In silico analysis of the SLC9B1 gene locus identified two putative promoters (P1 and P2) and two CpG islands - CpGI (overlapping with P1) and CpGII (intragenic) - at the 5' end of the gene. By deletion analysis of P1, we show that the region from -23 bp to +200 bp relative to the transcription start site (TSS) is sufficient for optimal promoter activity in a germ cell line. Additionally, in vitro methylation of the P1 (the -500 bp to +200 bp region relative to the TSS) abolishes its activity in germ cells and somatic cells strongly suggesting that DNA methylation at this promoter could regulate SLC9B1 expression. Furthermore, bisulfite-sequencing analysis of the P1/CpGI uncovered reduced methylation in the testis vs. lung whereas CpGII displayed no differences in methylation between these two tissues. Additionally, treatment of HEK 293 cells with 5-aza-2-Deoxycytidine led to upregulation of NHEDC1 transcript and reduced methylation in the promoter CpGI. Finally, we have uncovered both enhancer and silencer functions of the intragenic SLC9B1 CpGII. In all, our data suggests that SLC9B1 gene expression could be regulated via a concerted action of DNA methylation-dependent and independent mechanisms mediated by these multiple DNA regulatory elements.


Asunto(s)
Metilación de ADN , Elementos Reguladores de la Transcripción , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Testículo/metabolismo , Animales , Azacitidina/farmacología , Línea Celular , Metilación de ADN/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Pulmón/metabolismo , Masculino , Ratones , Especificidad de Órganos , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...