Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10639, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724666

RESUMEN

The present working conventional power generation systems utilization is reducing day by day because of their demerits are more functioning cost, high carbon dioxide emission, more complexity in handling, and required high installation area. So, the current power generation company focuses on Renewable Energy Sources (RES) which are wind, tidal, and solar. Here, the solar power network is utilized for supplying electricity to the electrical vehicle battery charging system. The Solar photovoltaic (PV) modules supply nonlinear power which is not useful for automotive systems. To maximize the supply power of the solar PV system, an Adaptive Step Genetic Algorithm Optimized (ASGAO) Radial Basis Functional Network (RBFN) is utilized for tracking the working point of the solar PV module thereby enhancing the operating efficiency of the overall system. The features of this proposed hybrid Maximum Power Point Tracking (MPPT) controller are quick system dynamic response, easy operation, quick convergence speed, more robustness, and high operating efficiency when equalized with the basic MPPT controllers. The major issue of solar PV modules is low supply voltage which is increased by introducing the wide input voltage DC-DC converter. The merits of this introduced converter are low-level voltage stress on diodes, good quality supply power, high voltage gain, plus low implementation cost. Here, the introduced converter along with the AGAO-RBFN controller is analyzed by selecting the MATLAB/Simulink environment. Also, the proposed converter is tested with the help of a programable DC source.

2.
Sci Rep ; 14(1): 10256, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704401

RESUMEN

Renewable energy resources are more useful when associated with the thermal power generation network because of their high accessibility in the environment, good system response, easy manufacturing, plus high scalable. So, the present research is going on solar power to reduce consumer grid dependency. The running of the PV network is quite easier, plus less human sources are involved. However, the solar modules' power generation is nonlinear fashion. So, the collection of peak power from the sunlight-dependent systems is a highly challenging task. In this article, a Modified Differential Step Grey Wolf Optimization with Adaptive Fuzzy Logic Controller (MDSGWO with FLC) is developed for collecting the maximum power from renewable energy resources under diverse Partial Shading Conditions (PSCs). The introduced method comprehensive analysis has been done along with the other recently existing MPPT methods in terms of convergence speed, MPP tracking accuracy, operating efficiency of the introduced method, functioning duty value of the DC-DC boost power converter, dependence of MPPT on sunlight system, total number of sensing devices are needed, plus peak power extraction from the proposed system. Here, the sunlight power generation cost is more to limit this issue, a power converter is selected in the second objective to develop the voltage source capability of the PV network. The overall PV-interfaced power converter network is examined by utilizing the MATLAB environment.

3.
Sci Rep ; 14(1): 10467, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714770

RESUMEN

At present, Renewable Energy Sources (RES) utilization keeps on increasing because of their merits are more availability in the atmosphere, easy energy harvesting, less maintenance expenses, plus more reliability. Here, the solar power generation systems are utilized for supplying the energy to the local consumers. The accurate, and efficient solar power supply to the customers is a very important factor to meet the peak load demand. The accurate power generation of the sunlight system completely depends on its accurate parameters extraction. In this work, a Modified Rao-based Dichotomy Technique (MRAODT) is introduced to identify the actual parameters of the different PV cells which are PWP 201 polycrystalline, plus RTC France. The proposed MRAODT method is compared with the other existing algorithms which are the teaching and learning algorithm, African vultures, plus tuna intelligence algorithm. Finally, from the simulation results, the MRAODT gives superior performance when associated with the other controllers in terms of parameters extraction time, accuracy in the PV cells parameters identification, plus convergence time of the algorithm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...