Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 707
Filtrar
1.
Front Immunol ; 15: 1372959, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690277

RESUMEN

Introduction: Hypoxia is a common pathological driver contributing to various forms of pulmonary vascular diseases leading to pulmonary hypertension (PH). Pulmonary interstitial macrophages (IMs) play pivotal roles in immune and vascular dysfunction, leading to inflammation, abnormal remodeling, and fibrosis in PH. However, IMs' response to hypoxia and their role in PH progression remain largely unknown. We utilized a murine model of hypoxia-induced PH to investigate the repertoire and functional profiles of IMs in response to acute and prolonged hypoxia, aiming to elucidate their contributions to PH development. Methods: We conducted single-cell transcriptomic analyses to characterize the repertoire and functional profiles of murine pulmonary IMs following exposure to hypobaric hypoxia for varying durations (0, 1, 3, 7, and 21 days). Hallmark pathways from the mouse Molecular Signatures Database were utilized to characterize the molecular function of the IM subpopulation in response to hypoxia. Results: Our analysis revealed an early acute inflammatory phase during acute hypoxia exposure (Days 1-3), which was resolved by Day 7, followed by a pro-remodeling phase during prolonged hypoxia (Days 7-21). These phases were marked by distinct subpopulations of IMs: MHCIIhiCCR2+EAR2+ cells characterized the acute inflammatory phase, while TLF+VCAM1hi cells dominated the pro-remodeling phase. The acute inflammatory phase exhibited enrichment in interferon-gamma, IL-2, and IL-6 pathways, while the pro-remodeling phase showed dysregulated chemokine production, hemoglobin clearance, and tissue repair profiles, along with activation of distinct complement pathways. Discussion: Our findings demonstrate the existence of distinct populations of pulmonary interstitial macrophages corresponding to acute and prolonged hypoxia exposure, pivotal in regulating the inflammatory and remodeling phases of PH pathogenesis. This understanding offers potential avenues for targeted interventions, tailored to specific populations and distinct phases of the disease. Moreover, further identification of triggers for pro-remodeling IMs holds promise in unveiling novel therapeutic strategies for pulmonary hypertension.


Asunto(s)
Perfilación de la Expresión Génica , Hipertensión Pulmonar , Hipoxia , Análisis de la Célula Individual , Transcriptoma , Animales , Ratones , Hipoxia/metabolismo , Hipoxia/inmunología , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/inmunología , Hipertensión Pulmonar/genética , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Masculino , Pulmón/inmunología , Pulmón/patología , Pulmón/metabolismo
2.
Environ Monit Assess ; 196(6): 548, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743314

RESUMEN

Palaeochannels are remnants of rivers or stream channels filled with younger sediments over the period of time. In ancient times, these rivers/channels were thriving in phenomenal conditions, but due to frequent tectonic activities, they lost the direction of their original path and were gradually either lost or buried under thick beds of younger alluvium. Palaeochannels act as reservoirs for fresh groundwater since they are made up of coarser sediments and were formerly flowing rivers. Depending on the groundwater regime and local topography, these could either be saturated or dry. The palaeochannels have high groundwater potential if saturated. These are ideal sites for artificial groundwater recharge, if dry. The identification of palaeochannels becomes quite challenging if they are buried under thick deposits of finer younger sediments. In the present study, an attempt has been made to characterize the Saraswati River Palaeochannel in parts of Yamuna Nagar and Kurukshetra districts of Haryana by using surface and subsurface geophysical methods. Till date, the palaeochannels in this area were mainly discerned on the basis of remote sensing only; therefore, geophysical characterization of these palaeochannels has been attempted in this study. In surface geophysical methods, electrical resistivity surveys, especially gradient resistivity profiling (GRP) and vertical electrical sounding (VES), were conducted in the study area, while electrical and natural gamma logging was used as subsurface geophysical approaches to identify the coarser sands of buried palaeochannels. The main objective of the study was to characterize the Saraswati River palaeochannel and analyze the quality of the groundwater stored in the palaeochannel in the study area. The findings were compared with the well-log data and were found in good agreement.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Agua Subterránea , Ríos , Ríos/química , India , Agua Subterránea/química , Sedimentos Geológicos/química
3.
Int J Exerc Sci ; 17(1): 504-516, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665166

RESUMEN

Daily living physical activities of rural pregnant women, across most continents in the world, involve adoption of high-flexion postures like deep-squat. Deep-squat elicits substantial activation of major trunk and lower extremity muscles. Adequate strength of trunk muscles is known to facilitate forward-downward propulsion of baby during labour. Therefore, current study aimed to explore influence of overall physical activity including squat exposure on trunk and lower-extremity muscle strength and labour outcomes in rural and urban primigravida women. Twenty-eight primi-gravida women were stratified into 2 groups: rural habitual-squatters (n=14) and urban non-squatters (n=14). Daily squat exposure was measured using MGM-Ground-Level-Activity-Questionnaire; lower-lumbar spine motion with modified-Schober-test; lower-extremity muscle strength using 30-sec-chair-raise-test, trunk muscle endurance with pressure biofeedback, calf muscle endurance was measured using calf raise test. Duration of second stage of labour and type of delivery was recorded. Habitual Squatters (average squat exposure=68.9±25.3 min) demonstrated lower waist: hip ratio (p=0.02); greater overall physical activity level (p=0.001), lumbo-pelvic mobility (p=0.02), lower-extremity muscle strength (p=0.001); and shorter duration of 2nd stage of labour (p=0.001) compared to non-squatters. Excellent positive correlation was observed between daily-squat exposure and back muscle endurance (Spearman's rho=0.98, p=0.001). Normal vaginal delivery was conducted in 83% squatters and in 71% non-squatters. Present findings indicate strong influence of habitual physical activity including squat exposure on improved trunk-lower-extremity strength, lumbo-pelvic mobility and shorter duration of second stage of labor.

4.
Toxicol Res (Camb) ; 13(2): tfae058, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38617714

RESUMEN

The present study aimed to elucidate the short term biodistribution of nano sized graphene oxide (GO) along with the toxicological assessment under in-vivo condition with an intent to analyse the toxic effects of sudden accidental exposure of GO The synthesised GO was characterized using UV-Visible spectroscopy, XRD, FTIR, Raman spectroscopy, TGA and DLS. The morphological imaging was performed using SEM, TEM and AFM. With a lateral size of less than 300 nm, these nanoparticles exhibit significant organ barrier permeability of up to 20%. Upon acute exposure to 10 mg/kg dose of ICG-tagged GO nanoflakes through intravenous route, various organs such as kidney, spleen and liver were observed, and the nanoparticles predominantly accumulated in the liver upon 24 h of exposure. Upon confirming the accumulation of these particles in liver through IVIS imaging, our next attempt was to analyse various biochemical and serum parameters. An elevation in various serum parameters such as ALT, AST, Creatinine and Bilirubin was observed. Similarly, in the case of biochemical parameters tested in liver homogenates, an increase in NO, Catalase, GSH, SOD, ROS, LPO, GR, GPx, and GST was observed. This study highlights the potential toxicological risk associated with GO exposure which must be taken into account for any risk analysis associated with GO based consumer products and the occupational hazards.

5.
Cureus ; 16(3): e56197, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38618472

RESUMEN

Background The COVID-19 disease continues to cause severe mortality and morbidity. Biochemical parameters are being used to predict the severity of the infection. This study aims to predict disease severity and mortality to help reduce mortality through timely intervention in a cost-effective way. Methods A total of 324 COVID-19 cases admitted at our hospital (All India Institute of Medical Sciences, Patna, BR, India) between June 2020 to December 2020 (phase 1: 190 patients) and April 2021 to May 2021 (phase 2: 134 patients) were recruited for this study. Statistical analysis was done using SPSS Statistics version 23 (IBM Corp., Armonk, NY, USA) and model prediction using Python (The Python Software Foundation, Wilmington, DE, USA). Results There were significant differences in biochemical parameters at the time of admission among COVID-19 patients between phases 1 and 2, ICU and non-ICU admissions, and expired and discharged patients. The receiver operating characteristic (ROC) curves predicted mortality solely based on biochemical parameters. Using multiple logistic regression in Python, a total of four models (two each) were developed to predict ICU admission and mortality. A total of 92 out of 96 patients were placed into the correct management category by our model. This model would have allowed us to preserve 17 of the 21 patients we lost. Conclusions We developed predictive models for admission (ICU or non-ICU) and mortality based on biochemical parameters at the time of admission. A predictive model with a significant predictive capability for IL-6 and procalcitonin values using normal biochemical parameters was proposed. Both can be used as machine learning tools to prognosticate the severity of COVID-19 infections. This study is probably the first of its kind to propose triage for admission in the ICU or non-ICU at the medical emergency department during the first presentation for the necessary optimal treatment of COVID-19 based on a predictive model.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38568479

RESUMEN

RATIONALE: Idiopathic Pulmonary Arterial Hypertension (IPAH) is characterized by extensive pulmonary vascular remodeling due to plexiform and obliterative lesions, media hypertrophy, inflammatory cell infiltration, and alterations of the adventitia. OBJECTIVE: Test the hypothesis that microscopic IPAH vascular lesions express unique molecular profiles, which collectively are different from control pulmonary arteries. METHODS: We used digital spatial transcriptomics to profile the genome-wide differential transcriptomic signature of key pathological lesions (plexiform, obliterative, intima+media hypertrophy, and adventitia) in IPAH lungs (n= 11) and compared these data to the intima+media and adventitia of control pulmonary artery (n=5). RESULTS: We detected 8273 transcripts in the IPAH lesions and control lung pulmonary arteries. Plexiform lesions and IPAH adventitia exhibited the greatest number of differentially expressed genes when compared with intima-media hypertrophy and obliterative lesions. Plexiform lesions in IPAH showed enrichment for (i) genes associated with TGFß-signaling and (ii) mutated genes affecting the extracellular matrix and endothelial-mesenchymal transformation. Plexiform lesions and IPAH adventitia showed upregulation of genes involved in immune and interferon signaling, coagulation, and complement pathways. Cellular deconvolution indicated variability in the number of vascular and inflammatory cells between IPAH lesions, which underlies the differential transcript profiling. CONCLUSIONS: IPAH lesions express unique molecular transcript profiles enriched for pathways involving pathogenetic pathways, including genetic disease drivers, innate and acquired immunity, hypoxia sensing, and angiogenesis signaling. These data provide a rich molecular-structural framework in IPAH vascular lesions that inform novel biomarkers and therapeutic targets in this highly morbid disease.

9.
Plants (Basel) ; 13(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38674512

RESUMEN

Pearl millet stands as an important staple food and feed for arid and semi-arid regions of India and South Africa. It is also a quick supplier of important micronutrients like Fe and Zn via grain to combat micronutrient deficiencies among people in developing countries. India has notably spearheaded advancements in pearl millet production and productivity through the All India Coordinated Pearl Millet Improvement Project. There were 21 hybrids evaluated over arid and semi-arid ecologies of the western and southern regions of India. AMMI and GGE biplot models were adopted to recommend a specific hybrid for the particular locality. A joint analysis of variation indicated a significant genotype-environment interaction for most of the agronomical and grain micronutrient parameters. Pearson's correlation values dissected the significant and positive correlation among agronomic traits and the negative correlation with grain micronutrient traits. GGE biplot analysis recommended the SHT 106 as a dual-purpose hybrid and SHT 115 as a biofortified hybrid for the grain's Fe and Zn content. SHT 110 and SHT 108 were selected as stable and high grain yield-producing hybrids across all environments and specifically for E1, E2, and E4 as per the Which-Won-Where and What biplot. SHT 109 and SHT 103 hybrids were stable and high dry fodder yield-producing hybrids across all environments. In this study, the Multi-Trait Stability Index (MTSI) was employed to select the most stable and high-performing hybrids for all traits. It selected SHT 120, SHT 106, and SHT 104 for stability and great performance across all environments. These findings underscored the significance of tailored hybrid recommendations and the potential of pearl millet in addressing both food security and malnutrition challenges in various agro-ecological regions.

10.
Plants (Basel) ; 13(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38592835

RESUMEN

Maize (Zea mays L.) is an important cereal and is affected by climate change. Therefore, the production of climate-smart maize is urgently needed by preserving diverse genetic backgrounds through the exploration of their genetic diversity. To achieve this, 96 maize inbred lines were used to screen for phenotypic yield-associated traits and grain quality parameters. These traits were studied across two different environments (Anand and Godhra) and polymorphic simple sequence repeat (SSR) markers were employed to investigate the genetic diversity, population structure, and trait-linked association. Genotype-environment interaction (GEI) reveals that most of the phenotypic traits were governed by the genotype itself across the environments, except for plant and ear height, which largely interact with the environment. The genotypic correlation was found to be positive and significant among protein, lysine and tryptophan content. Similarly, yield-attributing traits like ear girth, kernel rows ear-1, kernels row-1 and number of kernels ear-1 were strongly correlated to each other. Pair-wise genetic distance ranged from 0.0983 (1820194/T1 and 1820192/4-20) to 0.7377 (IGI-1101 and 1820168/T1). The SSRs can discriminate the maize population into three distinct groups and shortlisted two genotypes (IGI-1101 and 1820168/T1) as highly diverse lines. Out of the studied 136 SSRs, 61 were polymorphic to amplify a total of 131 alleles (2-3 per loci) with 0.46 average gene diversity. The Polymorphism Information Content (PIC) ranged from 0.24 (umc1578) to 0.58 (umc2252). Similarly, population structure analysis revealed three distinct groups with 19.79% admixture among the genotypes. Genome-wide scanning through a mixed linear model identifies the stable association of the markers umc2038, umc2050 and umc2296 with protein, umc2296 and umc2252 with tryptophan, and umc1535 and umc1303 with total soluble sugar. The obtained maize lines and SSRs can be utilized in future maize breeding programs in relation to other trait characterizations, developments, and subsequent molecular breeding performances for trait introgression into elite genotypes.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38551039

RESUMEN

One of the most crippling effects of diabetes mellitus is diabetic neuropathy, which can cause discomfort, loss of movement, and even amputation. Diabetic neuropathy manifests in a variety of ways, ranging from pain to death. Diagnosing diabetic neuropathy can be challenging since it often goes unnoticed for many years following the onset of diabetes. In addition to oxidative stress in neurons, hyperglycemia activates a number of metabolic pathways that are important sources of damage and possible targets for treatment in diabetic neuropathy. Downstream metabolic cascades caused by prolonged hyperglycemia include activation of protein kinase C, increased production of advanced glycation end products, excessive release of cytokines, increased oxidative stress, and injury to peripheral nerves. Despite the fact that these metabolic anomalies are considered the main cause of diabetes-related microvascular issues, the diverse mechanistic processes of neuropathy are characterized by organ-specific histological and biochemical features. Although the symptoms of diabetic neuropathy can be treated, there are few options to correct the underlying problem. Diabetic neuropathy exerts a tremendous financial, psychological, and physical burden on society, emphasizing the need for efficient and focused treatment. The major goal of this review is to shed light on the multiple mechanisms and pathways that contribute to the onset of diabetic neuropathy and to provide readers with a comprehensive understanding of emerging therapeutic strategies to postpone or reverse various forms of diabetic neuropathy. The article discusses available medications and provides the latest guidelines for the treatment of pain and distal symmetric polyneuropathy, including diabetic autonomic neuropathy, which may help the patients control pain well and assess alternatives for treatment that might be more successful in preventing or delaying the course of a disease.

12.
Cureus ; 16(2): e54242, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38496084

RESUMEN

INTRODUCTION: In the current era, infectious diseases pose a significant global challenge, primarily attributed to the widespread and prolonged use of antibiotics, which develop antimicrobial resistance. A significant proportion of pharmaceutical agents utilized globally can be traced back to plant origins, constituting approximately 25%. Medicinal applications harness a wide spectrum of plant-derived components, including flowers, leaves, stems, fruits, roots, waxes, oils, bioactive compounds, phytochemicals, and various other constituents. MATERIALS AND METHODS: Our experiment evaluated the antibacterial activity of four different culinary plant leaf extracts. These extracts were prepared using four different solvents and were investigated against the gram-negative bacteria Escherichia coli DH5α using agar well diffusion and agar disc diffusion methods by measuring the zone of inhibition. RESULTS: The aqueous extract of all leaves did not show any antibacterial activity, likely due to poor diffusion due to the formation of a precipitate. Conversely, Cichorium endivia has shown the highest antibacterial activity in isopropanol as compared to other herbs. Among the herbs examined, organic extracts from endives and soybeans have demonstrated notably strong antibacterial activity compared to the other herbs. CONCLUSION: Conducting a systematic screening of leaf extracts from various culinary herbs to assess their antibacterial effectiveness against E. coli has produced encouraging and noteworthy results. In the investigation of various herbs, organic extracts derived from endives and soybeans have exhibited particularly robust antibacterial efficacy when compared to other herbal extracts.

13.
Heliyon ; 10(5): e27048, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463846

RESUMEN

Castor (Ricinus communis L.) is an industrially important oil producing crop belongs to Euphorbiaceae family. Castor oil has unique chemical properties make it industrially important crop. It is a member of monotypic genus even though it has ample amount of variability. Using this variability, conventionally many varieties and hybrids have been developed. But, like other crops, the modern and unconventional methods of crop improvement has not fully explored in castor. This article discusses the use of polyploidy induction, distant/wide hybridization and mutation breeding as tools for generating variety. Modern approaches accelerate the speed of crop breeding as an alternative tool. To achieve this goal, molecular markers are employed in breeding to capture the genetic variability through molecular analysis and population structuring. Allele mining is used to trace the evolution of alleles, identify new haplotypes and produce allele specific markers for use in marker aided selection using Genome wide association studies (GWAS) and quantitative trait loci (QTL) mapping. Plant genetic transformation is a rapid and effective mode of castor improvement is also discussed here. The efforts towards developing stable regeneration protocol provide a wide range of utility like embryo rescue in distant crosses, development of somaclonal variation, haploid development using anther culture and callus development for stable genetic transformation has reviewed in this article. Omics has provided intuitions to the molecular mechanisms of (a)biotic stress management in castor along with dissected out the possible genes for improving the yield. Relating genes to traits offers additional scientific inevitability leading to enhancement and sympathetic mechanisms of yield improvement and several stress tolerance.

14.
NPJ Precis Oncol ; 8(1): 66, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454151

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) remains highly lethal due to limited therapeutic options and expensive/burdensome drug discovery processes. Utilizing genomic-data-driven Connectivity Mapping (CMAP) to identify a drug closer to real-world PC targeting may improve pancreatic cancer (PC) patient outcomes. Initially, we mapped CMAP data to gene expression from 106 PC patients, identifying nine negatively connected drugs. These drugs were further narrowed down using a similar analysis for PC cell lines, human tumoroids, and patient-derived xenografts datasets, where ISOX emerged as the most potent agent to target PC. We used human and mouse syngeneic PC cells, human and mouse tumoroids, and in vivo mice to assess the ability of ISOX alone and in combination with 5FU to inhibit tumor growth. Global transcriptomic and pathway analysis of the ISOX-LINCS signature identified HDAC 6/cMyc as the target axis for ISOX. Specifically, we discovered that genetic and pharmacological targeting of HDAC 6 affected non-histone protein cMyc acetylation, leading to cMyc instability, thereby disrupting PC growth and metastasis by affecting cancer stemness. Finally, KrasG12D harboring tumoroids and mice responded effectively against ISOX and 5FU treatment by enhancing survival and controlling metastasis incidence. Overall, our data validate ISOX as a new drug to treat advanced PC patients without toxicity to normal cells. Our study supports the clinical utility of ISOX along with 5FU in future PC clinical trials.

15.
Sci Rep ; 14(1): 3140, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326386

RESUMEN

Dissolved oxygen (DO) is an important parameter in assessing water quality. The reduction in DO concentration is the result of eutrophication, which degrades the quality of water. Aeration is the best way to enhance the DO concentration. In the current study, the aeration efficiency (E20) of various numbers of circular jets in an open channel was experimentally investigated for different channel angle of inclination (θ), discharge (Q), number of jets (Jn), Froude number (Fr), and hydraulic radius of each jet (HRJn). The statistical results show that jets from 8 to 64 significantly provide aeration in the open channel. The aeration efficiency and input parameters are modelled into a linear relationship. Additionally, utilizing WEKA software, three soft computing models for predicting aeration efficiency were created with Artificial Neural Network (ANN), M5P, and Random Forest (RF). Performance evaluation results and box plot have shown that ANN is the outperforming model with correlation coefficient (CC) = 0.9823, mean absolute error (MAE) = 0.0098, and root mean square error (RMSE) = 0.0123 during the testing stage. In order to assess the influence of different input factors on the E20 of jets, a sensitivity analysis was conducted using the most effective model, i.e., ANN. The sensitivity analysis results indicate that the angle of inclination is the most influential input variable in predicting E20, followed by discharge and the number of jets.

16.
Cancer Lett ; 587: 216704, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38360138

RESUMEN

Despite significant advancements in prevention and treatment, colorectal cancer (CRC) remains the third leading cause of cancer-related deaths. Animal models, including xenografts, syngeneic, and genetically engineered, have emerged as indispensable tools in cancer research. These models offer a valuable platform to address critical questions regarding molecular pathogenesis and test therapeutic interventions before moving on to clinical trials. Advancements in CRC animal models have also facilitated the advent of personalized and precision medicine. Patient-derived xenografts and genetically engineered mice that mirror features of human tumors allow for tailoring treatments to specific CRC subtypes, improving treatment outcomes and quality of life. To overcome the limitations of individual model systems, recent studies have employed a multi-modal approach, combining different animal models, 3D organoids, and in vitro studies. This integrative approach provides a comprehensive understanding of CRC biology, including the tumor microenvironment and therapeutic responses, driving the development of more effective and personalized therapeutic interventions. This review discusses the animal models used for CRC research, including recent advancements and limitations of these animal models.


Asunto(s)
Neoplasias Colorrectales , Ratones , Humanos , Animales , Neoplasias Colorrectales/patología , Calidad de Vida , Modelos Animales de Enfermedad , Microambiente Tumoral
17.
Chempluschem ; 89(4): e202300721, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38385783

RESUMEN

An easily synthesizable indole-derived chromofluorogenic probe InNS has been demonstrated for recognition of trivalent metal ions (i. e., Al3+, Ga3+, In3+ and Fe3+). Both UV-Vis and emission spectral studies have been employed to assess the cation sensing ability of InNS in semi-aqueous medium. This probe exhibited a chromogenic response for these metal ions, and the related change was accompanied with the appearance of a new absorption near 376 nm. An obvious color change from pale yellow to dark yellow could also be noticed upon addition of the aforementioned metal ions to the probe's solution. Distinctively from the UV-Vis analysis, the fluorescence behavior of InNS was completely different; it displayed a 'turn-on' fluorescence response for only Al3+ among all the studied cations. The detection limit and the association constant (Ka) for Al3+ were determined to be 12.5 nM and 6.85×106 M-1, respectively. A potential 1 : 1 binding mode of Al3+-InNS has been established based on Job's plot, 1H NMR and DFT analyses. The reversibility experiment was conducted using strongly chelating EDTA ion, and a corresponding logic gate has been devised. In terms of practical applications, the InNS has been utilized to detect Al3+ in human breast carcinoma (MCF-7) cell lines displaying promising 'turn-on' bioimaging experiments.

18.
Res Sq ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38313293

RESUMEN

Intrauterine metabolic reprogramming occurs in obese mothers during gestation, putting the offspring at high risk of developing obesity and associated metabolic disorders even before birth. We have generated a mouse model of maternal high-fat diet-induced obesity that recapitulates the metabolic changes seen in humans born to obese women. Here, we profiled and compared the metabolic characteristics of bone marrow cells of newly weaned 3-week-old offspring of dams fed either a high-fat (Off-HFD) or a regular diet (Off-RD). We utilized a state-of-the-art targeted metabolomics approach coupled with a Seahorse metabolic analyzer. We revealed significant metabolic perturbation in the offspring of HFD-fed vs. RD-fed dams, including utilization of glucose primarily via oxidative phosphorylation. We also found a reduction in levels of amino acids, a phenomenon previously linked to bone marrow aging. Using flow cytometry, we identified a unique B cell population expressing CD19 and CD11b in the bone marrow of three-week-old offspring of high-fat diet-fed mothers, and found increased expression of Cyclooxygenase-2 (COX-2) on myeloid CD11b, and on CD11bhi B cells. Altogether, we demonstrate that the offspring of obese mothers show metabolic and immune changes in the bone marrow at a very young age and prior to any symptomatic metabolic disease.

19.
Sci Total Environ ; 920: 171043, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38369158

RESUMEN

Rapid modern industrialization and urbanization have escalated heavy metal pollution, with palladium (Pd2+) raising significant concerns due to its extensive usage in catalysis, hydrogen storage, and electronics, thereby imposing substantial risks on the environment and human health. In this study, we report a highly fluorescent indium nanocubes based chemosensor (InNCs) functionalized with perylene tetracarboxylic acid (PTCA) and 4-(pyridyl)ethenyl benzene (PEB). The InNCs exhibited emission maximum at 415 nm (λex âˆ¼ 350 nm) with robust chemical and photo-stability, and acted as a fluorogenic probe for selective recognition of Pd2+ in aqueous medium. The fluorescence sensing properties of InNCs were thoroughly assessed via different techniques including steady-state absorption, emission and time-resolved emission spectroscopic methods. Among the various competitive analytes, only Pd2+ could induce a significant fluorescence quenching in the probe. This "turn-off" fluorescence sensing demonstrated a remarkably low LoD of ∼65 nM. Notably, with the addition of EDTA, the probe displayed good recyclability upto 4 cycles. The sensory probe was successfully employed as a reusable platform to estimate Pd(II) in different real water and soil samples with considerable accuracy (∼ 5-10 % error). Moreover, the probe exhibited a pH-induced fluorescence transition, indicating its potential to be applied as a pH sensor. The Pd(II) binding and pH-sensing mechanisms have also been elucidated through density functional theory (DFT) calculations.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123971, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38306922

RESUMEN

A quinoline-derived Schiff base QnSb has been synthesized for fluorescent and colorimetric recognition of Al3+ ions in a semi-aqueous medium. The compound QnSb has been characterized by elemental analysis, FT-IR, 1H/13C NMR, UV-Vis and fluorescence spectral techniques. The crystal structure of the QnSb was confirmed by single crystal X-ray diffraction (SC-XRD) analysis. Notably, almost non-fluorescent QnSb served as a 'turn on' responsive probe for Al3+ by inducing a remarkable fluorescence enhancement at 422 nm when excited at 310 nm. The probe QnSb exhibited high selectivity for Al3+ in CH3CN/H2O (4:1, v/v) solution over several competing metal ions (e.g., Mg2+, Pb2+, Zn2+, Cd2+, Co2+, Cu2+, Ca2+, Ni2+, Fe3+/2+, Cr3+, Mn2+, Sn2+, and Hg2+). The limit of detection (LoD) was computed as low as 15.8 nM which is significantly lower than the permissible limit set by WHO for Al3+ ions in drinking water. A 1:1 binding stoichiometry of complex QnSb-Al3+ was established with the help of Job's plot, ESI-MS, NMR and DFT analyses. Based on its remarkable sensing ability, the probe QnSb was utilized to establish molecular logic gates, and the fluorescence detection of Al3+ could clearly be demonstrated on the filter paper test strips.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...