Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Chem Biol ; 27(7): 806-816.e8, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32359426

RESUMEN

The search for antimalarial chemotypes with modes of action unrelated to existing drugs has intensified with the recent failure of first-line therapies across Southeast Asia. Here, we show that the trisubstituted imidazole MMV030084 potently inhibits hepatocyte invasion by Plasmodium sporozoites, merozoite egress from asexual blood stage schizonts, and male gamete exflagellation. Metabolomic, phosphoproteomic, and chemoproteomic studies, validated with conditional knockdown parasites, molecular docking, and recombinant kinase assays, identified cGMP-dependent protein kinase (PKG) as the primary target of MMV030084. PKG is known to play essential roles in Plasmodium invasion of and egress from host cells, matching MMV030084's activity profile. Resistance selections and gene editing identified tyrosine kinase-like protein 3 as a low-level resistance mediator for PKG inhibitors, while PKG itself never mutated under pressure. These studies highlight PKG as a resistance-refractory antimalarial target throughout the Plasmodium life cycle and promote MMV030084 as a promising Plasmodium PKG-targeting chemotype.


Asunto(s)
Antimaláricos/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Resistencia a Medicamentos/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Animales , Antimaláricos/química , Antimaláricos/metabolismo , Sitios de Unión , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Femenino , Hepatocitos/citología , Hepatocitos/metabolismo , Hepatocitos/parasitología , Humanos , Imidazoles/química , Estadios del Ciclo de Vida/efectos de los fármacos , Metabolómica , Ratones , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Proteómica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
2.
Nat Microbiol ; 2(10): 1403-1414, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28808258

RESUMEN

Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress Plasmodium berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR-Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 (P. falciparum multidrug resistance gene-1) as a determinant of parasite resistance to HHQs. Haemoglobin and haem fractionation assays suggest a mode of action that results in reduced haemozoin levels and might involve inhibition of host haemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs, including lumefantrine, confirming that HHQs have a different mode of action to other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria.


Asunto(s)
Antimaláricos/farmacología , Malaria Falciparum/tratamiento farmacológico , Malaria/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Quinolinas/farmacología , Secuencia de Aminoácidos , Animales , Anopheles , Sistemas CRISPR-Cas/genética , ADN Protozoario/genética , ADN Protozoario/metabolismo , Combinación de Medicamentos , Resistencia a Medicamentos , Endocitosis/efectos de los fármacos , Etanolaminas/farmacología , Fluorenos/farmacología , Edición Génica , Células HEK293 , Hemo , Hemoglobinas/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Lumefantrina , Malaria/transmisión , Malaria Falciparum/sangre , Malaria Falciparum/transmisión , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/efectos de los fármacos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Mutación , Oocistos/efectos de los fármacos , Plasmodium berghei/patogenicidad , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Quinolinas/química
3.
Mol Pharmacol ; 89(6): 678-85, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27048953

RESUMEN

Malaria is a critical public health issue in the tropical world, causing extensive morbidity and mortality. Infection by unicellular, obligate intracellular Plasmodium parasites causes malaria. The emergence of resistance to current antimalarial drugs necessitates the development of novel therapeutics. A potential novel drug target is the purine import transporter. Because Plasmodium parasites are purine auxotrophic, they must import purines from their host to fulfill metabolic requirements. They import purines via equilibrative nucleoside transporter 1 (ENT1) homologs. Recently, we used a yeast-based high-throughput screen to identify inhibitors of the P. falciparum ENT1 (PfENT1) that kill P. falciparum parasites in culture. P. berghei infection of mice is an animal model for human malaria. Because P. berghei ENT1 (PbENT1) shares only 60% amino acid sequence identity with PfENT1, we sought to characterize PbENT1 and its sensitivity to our PfENT1 inhibitors. We expressed PbENT1 in purine auxotrophic yeast and used radiolabeled substrate uptake to characterize its function. We showed that PbENT1 transports both purines and pyrimidines. It preferred nucleosides compared with nucleobases. Inosine (IC50 = 3.7 µM) and guanosine (IC50 = 21.3 µM) had the highest affinities. Our recently discovered PfENT1 inhibitors were equally effective against both PbENT1- and PfENT1-mediated purine uptake. The PfENT1 inhibitors are at least 10-fold more potent against PfENT1 than human hENT1. They kill P. berghei parasites in 24-hour ex vivo culture. Thus, the P. berghei murine malaria model may be useful to evaluate the efficacy of PfENT1 inhibitors in vivo and their therapeutic potential for treatment of malaria.


Asunto(s)
Antimaláricos/farmacología , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Plasmodium berghei/metabolismo , Adenosina/metabolismo , Animales , Femenino , Humanos , Concentración 50 Inhibidora , Ratones , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato/efectos de los fármacos , Factores de Tiempo , Tritio/metabolismo , Uridina/metabolismo
4.
Anal Chem ; 86(17): 8814-21, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25102353

RESUMEN

New reliable and cost-effective antimalarial drug screening assays are urgently needed to identify drugs acting on different stages of the parasite Plasmodium falciparum, and particularly those responsible for human-to-mosquito transmission, that is, the P. falciparum gametocytes. Low Z' factors, narrow dynamic ranges, and/or extended assay times are commonly reported in current gametocyte assays measuring gametocyte-expressed fluorescent or luciferase reporters, endogenous ATP levels, activity of gametocyte enzymes, or redox-dependent dye fluorescence. We hereby report on a dual-luciferase gametocyte assay with immature and mature P. falciparum gametocyte stages expressing red and green-emitting luciferases from Pyrophorus plagiophthalamus under the control of the parasite sexual stage-specific pfs16 gene promoter. The assay was validated with reference antimalarial drugs and allowed to quantitatively and simultaneously measure stage-specific drug effects on parasites at different developmental stages. The optimized assay, requiring only 48 h incubation with drugs and using a cost-effective luminogenic substrate, significantly reduces assay cost and time in comparison to state-of-the-art analogous assays. The assay had a Z' factor of 0.71 ± 0.03, and it is suitable for implementation in 96- and 384-well microplate formats. Moreover, the use of a nonlysing D-luciferin substrate significantly improved the reliability of the assay and allowed one to perform, for the first time, P. falciparum bioluminescence imaging at single-cell level.


Asunto(s)
Mediciones Luminiscentes , Microscopía por Video , Parasitología/métodos , Plasmodium falciparum/aislamiento & purificación , Antimaláricos/farmacología , Línea Celular , Técnica del Anticuerpo Fluorescente , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Regiones Promotoras Genéticas , Proteínas Protozoarias/genética , Análisis de la Célula Individual
5.
Eukaryot Cell ; 13(5): 550-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24297444

RESUMEN

The prodigious rate at which malaria parasites proliferate during asexual blood-stage replication, midgut sporozoite production, and intrahepatic development creates a substantial requirement for essential nutrients, including fatty acids that likely are necessary for parasite membrane formation. Plasmodium parasites obtain fatty acids either by scavenging from the vertebrate host and mosquito vector or by producing fatty acids de novo via the type two fatty acid biosynthesis pathway (FAS-II). Here, we study the FAS-II pathway in Plasmodium falciparum, the species responsible for the most lethal form of human malaria. Using antibodies, we find that the FAS-II enzyme FabI is expressed in mosquito midgut oocysts and sporozoites as well as liver-stage parasites but not during the blood stages. As expected, FabI colocalizes with the apicoplast-targeted acyl carrier protein, indicating that FabI functions in the apicoplast. We further analyze the FAS-II pathway in Plasmodium falciparum by assessing the functional consequences of deleting fabI and fabB/F. Targeted deletion or disruption of these genes in P. falciparum did not affect asexual blood-stage replication or the generation of midgut oocysts; however, subsequent sporozoite development was abolished. We conclude that the P. falciparum FAS-II pathway is essential for sporozoite development within the midgut oocyst. These findings reveal an important distinction from the rodent Plasmodium parasites P. berghei and P. yoelii, where the FAS-II pathway is known to be required for normal parasite progression through the liver stage but is not required for oocyst development in the Anopheles mosquito midgut.


Asunto(s)
Anopheles/parasitología , Ácidos Grasos/biosíntesis , Insectos Vectores/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Esporozoítos/metabolismo , Animales , Tracto Gastrointestinal/parasitología , Humanos , Malaria Falciparum/parasitología , Oocistos/crecimiento & desarrollo , Oocistos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Esporozoítos/crecimiento & desarrollo
6.
Cell Microbiol ; 15(9): 1585-604, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23490300

RESUMEN

The successful navigation of malaria parasites through their life cycle, which alternates between vertebrate hosts and mosquito vectors, requires a complex interplay of metabolite synthesis and salvage pathways. Using the rodent parasite Plasmodium berghei, we have explored the synthesis and scavenging pathways for lipoic acid, a short-chain fatty acid derivative that regulates the activity of α-ketoacid dehydrogenases including pyruvate dehydrogenase. In Plasmodium, lipoic acid is either synthesized de novo in the apicoplast or is scavenged from the host into the mitochondrion. Our data show that sporozoites lacking the apicoplast lipoic acid protein ligase LipB are markedly attenuated in their infectivity for mice, and in vitro studies document a very late liver stage arrest shortly before the final phase of intra-hepaticparasite maturation. LipB-deficient asexual blood stage parasites show unimpaired rates of growth in normal in vitro or in vivo conditions. However, these parasites showed reduced growth in lipid-restricted conditions induced by treatment with the lipoic acid analogue 8-bromo-octanoate or with the lipid-reducing agent clofibrate. This finding has implications for understanding Plasmodium pathogenesis in malnourished children that bear the brunt of malarial disease. This study also highlights the potential of exploiting lipid metabolism pathways for the design of genetically attenuated sporozoite vaccines.


Asunto(s)
Interacciones Huésped-Parásitos , Hígado/parasitología , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/metabolismo , Ácido Tióctico/metabolismo , Animales , Eliminación de Gen , Ratones , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
7.
Bioorg Med Chem Lett ; 23(4): 1022-5, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23313245

RESUMEN

Exploration of triclosan analogs has led to novel diaryl ureas with significant potency against in vitro cultures of drug-resistant and drug-sensitive strains of the human malaria parasite Plasmodium falciparum. Compound 18 demonstrated EC(50) values of 37 and 55 nM versus in vitro cultured parasite strains and promising in vivo efficacy in a Plasmodium berghei antimalarial mouse model, with >50% survival at day 31 post-treatment when administered subcutaneously at 256 mg/kg. This series of compounds provides a chemical scaffold of novel architecture, as validated by cheminformatics analysis, to pursue antimalarial drug discovery efforts.


Asunto(s)
Antimaláricos/farmacología , Derivados del Benceno/farmacología , Malaria Falciparum/tratamiento farmacológico , Urea/análogos & derivados , Urea/farmacología , Animales , Antimaláricos/química , Derivados del Benceno/química , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Malaria Falciparum/parasitología , Ratones
9.
Cell Host Microbe ; 4(6): 567-78, 2008 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-19064257

RESUMEN

The fatty acid synthesis type II pathway has received considerable interest as a candidate therapeutic target in Plasmodium falciparum asexual blood-stage infections. This apicoplast-resident pathway, distinct from the mammalian type I process, includes FabI. Here, we report synthetic chemistry and transfection studies concluding that Plasmodium FabI is not the target of the antimalarial activity of triclosan, an inhibitor of bacterial FabI. Disruption of fabI in P. falciparum or the rodent parasite P. berghei does not impede blood-stage growth. In contrast, mosquito-derived, FabI-deficient P. berghei sporozoites are markedly less infective for mice and typically fail to complete liver-stage development in vitro. This defect is characterized by an inability to form intrahepatic merosomes that normally initiate blood-stage infections. These data illuminate key differences between liver- and blood-stage parasites in their requirements for host versus de novo synthesized fatty acids, and create new prospects for stage-specific antimalarial interventions.


Asunto(s)
Hígado/parasitología , Plasmodium berghei/patogenicidad , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/metabolismo , Animales , Antimaláricos/farmacología , Eliminación de Gen , Malaria/parasitología , Ratones , Ratones Endogámicos C57BL , Mutagénesis Insercional , Parasitemia , Plasmodium berghei/enzimología , Plasmodium berghei/crecimiento & desarrollo , Plasmodium falciparum/enzimología , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/genética , Triclosán/farmacología
10.
J Biol Chem ; 282(35): 25436-44, 2007 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-17567585

RESUMEN

The x-ray crystal structures of five triclosan analogs, in addition to that of the isoniazid-NAD adduct, are described in relation to their integral role in the design of potent inhibitors of the malarial enzyme Plasmodium falciparum enoyl acyl carrier protein reductase (PfENR). Many of the novel 5-substituted analogs exhibit low micromolar potency against in vitro cultures of drug-resistant and drug-sensitive strains of the P. falciparum parasite and inhibit purified PfENR enzyme with IC50 values of <200 nM. This study has significantly expanded the knowledge base with regard to the structure-activity relationship of triclosan while affording gains against cultured parasites and purified PfENR enzyme. In contrast to a recent report in the literature, these results demonstrate the ability to improve the in vitro potency of triclosan significantly by replacing the suboptimal 5-chloro group with larger hydrophobic moieties. The biological and x-ray crystallographic data thus demonstrate the flexibility of the active site and point to future rounds of optimization to improve compound potency against purified enzyme and intracellular Plasmodium parasites.


Asunto(s)
Antimaláricos/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Plasmodium falciparum/enzimología , Proteínas Protozoarias/química , Triclosán/química , Animales , Antimaláricos/metabolismo , Sitios de Unión/efectos de los fármacos , Cristalografía por Rayos X , Diseño de Fármacos , Resistencia a Medicamentos/efectos de los fármacos , Modelos Moleculares , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Estructura Terciaria de Proteína , Proteínas Protozoarias/antagonistas & inhibidores , Triclosán/análogos & derivados , Triclosán/metabolismo
11.
Bioorg Med Chem ; 11(23): 4945-8, 2003 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-14604656

RESUMEN

Absolute configuration of taxiresinol 1, a lignan from the heartwood of Taxus wallichiana has been determined as 8R, 8'R, and 7'R with the help of chemical correlation method and X-ray crystallography. The anticancer activity of taxiresinol 1 and other two lignans 2, 3 were also studied. Taxiresinol 1 showed notable anticancer activity in the in vitro bioassays against colon, liver, ovarian and breast cancer cell lines.


Asunto(s)
Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Furanos/química , Furanos/farmacología , Lignanos/química , Lignanos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Taxus/química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Espectroscopía de Resonancia Magnética , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...