Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 4064, 2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906627

RESUMEN

This study aimed to screen the bioactive compounds from Prosopis juliflora leaf supercritical fluid extract and to assess its antimicrobial properties. Supercritical carbon dioxide and Soxhlet methods were used for extraction. The extract was subjected to Gas Chromatography-Mass Spectrometer (GC-MS) and Fourier Transform Infrared for the characterization of the phyto-components. When compared to soxhlet extraction, more components (35) were eluted by supercritical fluid extraction (SFE), according to GC-MS screening. Rhizoctonia bataticola, Alternaria alternata, and Colletotrichum gloeosporioides were all successfully inhibited by P. juliflora leaf SFE extract, which demonstrated strong antifungal properties with mycelium percent inhibition of 94.07%, 93.15%, and 92.43%, respectively, compared to extract from Soxhlet, which registered 55.31%, 75.63% and 45.13% mycelium inhibition respectively. Also, SFE P. juliflora extracts registered higher zone of inhibition 13.90 mm, 14.47 mm and 14.53 mm against all three test food-borne bacterial pathogens viz Escherichia coli, Salmonella enterica and Staphylococcus aureus respectively. Results obtained from GC-MS screening revealed that SFE is more efficient than soxhlet extraction in recovering the phyto-components. P. juliflora may provide antimicrobial agents, a novel natural inhibitory metabolite.


Asunto(s)
Antiinfecciosos , Cromatografía con Fluido Supercrítico , Prosopis , Cromatografía de Gases y Espectrometría de Masas , Extractos Vegetales/farmacología , Dióxido de Carbono , Antiinfecciosos/farmacología , Cromatografía con Fluido Supercrítico/métodos , Hojas de la Planta
2.
Chemosphere ; 279: 130467, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33857651

RESUMEN

Two-dimensional (2D) Molybdenum disulfide (MoS2) has become one of the most exciting areas of research for adsorbents due to its high surface area and abundant active sites. Mainly, 2D MoS2 show promising removal of textile dye pollutants by adsorption process, but it show high affinity for anionic type of dyes, that limits its performance in mixed dye pollutants treatment. Herein, we demonstrate an integrated approach to remove mixed dye pollutants (anionic and cationic) concurrently by combining adsorption and photocatalysis process. We synthesize MoS2/TiO2 nanocomposites for different weight percentages 2.5, 5, 10, 20, 30 and 50 wt% of pre-synthesized flower-like MoS2 nanoparticle by a two-step hydrothermal method. We demonstrate a new process of two-stage adsorption/photocatalysis using high wt% of MoS2 (Stage-I) and low wt% of MoS2 (Stage-II) nanocomposites. The proposed two-stage integrated adsorption and photocatalysis process using 50% and 2.5% of MoS2 coated TiO2, respectively showed complete removal of methylene blue dye ∼5 times faster than conventional single-stage (adsorption or photocatalysis) water treatment process. Furthermore, the feasibility of the proposed two-stage method in mixed dye pollutants removal (anionic and cationic) testified, which showed excellent performance even in doubling the dye pollutant concentration. This work brings a deeper insight into understanding the morphology and concentration of 2-D MoS2 in MoS2/TiO2 nanocomposite in tackling mixed dye pollutants and the possibilities of applying in textile dyeing industries wastewater treatment plants.


Asunto(s)
Contaminantes Ambientales , Nanocompuestos , Contaminantes Químicos del Agua , Adsorción , Colorantes , Molibdeno , Titanio , Contaminantes Químicos del Agua/análisis
3.
Drug Metab Lett ; 14(1): 41-53, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-31763971

RESUMEN

BACKGROUND: Carbon-carbon bond cleavage of a saturated aliphatic moiety is rarely seen in xenobiotic metabolism. Olanexidine (Olanedine®), containing an n-octyl (C8) side chain, was mainly metabolized to various shortened side chain (C4 to C6) acid-containing metabolites in vivo in preclinical species. In liver microsomes and S9, the major metabolites of olanexidine were from multi-oxidation on its n-octyl (C8) side chain. However, the carbon-carbon bond cleavage mechanism of n-octyl (C8) side chain, and enzyme(s) responsible for its metabolism in human remained unknown. METHODS: A pair of regioisomers of α-ketol-containing C8 side chain olanexidine analogs (3,2-ketol olanexidine and 2,3-ketol olanexidine) were synthesized, followed by incubation in human liver microsomes, recombinant human cytochrome P450 enzymes or human hepatocytes, and subsequent metabolite identification using LC/UV/MS. RESULTS: Multiple shortened side chain (C4 to C6) metabolites were identified, including C4, C5 and C6- acid and C6-hydroxyl metabolites. Among 19 cytochrome P450 enzymes tested, CYP2D6, CYP3A4 and CYP3A5 were identified to catalyze carbon-carbon bond cleavage. CONCLUSION: 3,2-ketol olanexidine and 2,3-ketol olanexidine were confirmed as the key intermediates in carbon-carbon bond cleavage. Its mechanism is proposed that a nucleophilic addition of iron-peroxo species, generated by CYP2D6 and CYP3A4/5, to the carbonyl group caused the carbon-carbon bond cleavage between the adjacent hydroxyl and ketone groups. As results, 2,3-ketol olanexidine formed a C6 side chain acid metabolite. While, 3,2-ketol olanexidine formed a C6 side chain aldehyde intermediate, which was either oxidized to a C6 side chain acid metabolite or reduced to a C6 side chain hydroxyl metabolite.


Asunto(s)
Biguanidas , Carbono , Catálisis , Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450 , Humanos , Microsomas Hepáticos
4.
Nanomaterials (Basel) ; 9(4)2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31022912

RESUMEN

An important segment of the future renewable energy economy is the implementation of novel energy generation systems. Such electrochemical systems are solid oxide fuel cells, which have the advantage of direct conversion of the chemical energy stored in the fuel to electrical energy with high efficiency. Improving the performance and lowering the cost of solid oxide fuel cells (SOFCs) are strongly dependent on finding commercially viable methods for nano-functionalization of their electrodes via infiltration. Inkjet printing technology was proven to be a feasible method providing scalability and high-resolution ink delivery. LaxSr1-xCoyFe1-yO3-δ cathodes were modified using inkjet printing for infiltration with two different materials: Gd-doped ceria (CGO) commonly used as ion-conductor and La0.6Sr0.4CoO3-δ (LCO) commonly used as a mixed ionic electronic conductor. As-modified surface structures promoted the extension of the three-phase boundary (TPB) and enhanced the mechanisms of the oxygen reduction reaction. Electrochemical impedance measurements revealed significantly lowered polarization resistances (between 2.7 and 3.7 times) and maximum power output enhancement of 24% for CGO infiltrated electrodes and 40% for LCO infiltrated electrodes.

5.
Sci Rep ; 6: 32958, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27604544

RESUMEN

Mature thrombin activatable fibrinolysis inhibitor (TAFIa) is a carboxypeptidase that stabilizes fibrin clots by removing C-terminal arginines and lysines from partially degraded fibrin. Inhibition of TAFIa stimulates the degradation of fibrin clots and may help to prevent thrombosis. Applying a lead finding approach based on literature-mining, we discovered that anabaenopeptins, cyclic peptides produced by cyanobacteria, were potent inhibitors of TAFIa with IC50 values as low as 1.5 nM. We describe the isolation and structure elucidation of 20 anabaenopeptins, including 13 novel congeners, as well as their pronounced structure-activity relationships (SAR) with respect to inhibition of TAFIa. Crystal structures of the anabaenopeptins B, C and F bound to the surrogate protease carboxypeptidase B revealed the binding modes of these large (~850 Da) compounds in detail and explained the observed SAR, i.e. the strong dependence of the potency on a basic (Arg, Lys) exocyclic residue that addressed the S1' binding pocket, and a broad tolerance towards substitutions in the pentacyclic ring that acted as a plug of the active site.


Asunto(s)
Carboxipeptidasa B2/antagonistas & inhibidores , Fibrinólisis/efectos de los fármacos , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/farmacología , Carboxipeptidasa B/antagonistas & inhibidores , Carboxipeptidasa B/química , Carboxipeptidasa B2/química , Dominio Catalítico , Cristalización , Cristalografía por Rayos X , Cianobacterias/química , Humanos , Modelos Moleculares , Péptidos Cíclicos/aislamiento & purificación , Relación Estructura-Actividad
6.
Bioorg Med Chem Lett ; 22(4): 1606-10, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22264487

RESUMEN

Tropanylamide was investigated as a possible scaffold for ß-tryptase inhibitors with a basic benzylamine P1 group and a substituted thiophene P4 group. Comparing to piperidinylamide, the tropanylamide scaffold is much more rigid, which presents less opportunity for the inhibitor to bind with off-target proteins, such as cytochrome P450, SSAO, and hERG potassium channel. The proposed binding mode was further confirmed by an in-house X-ray structure through co-crystallization.


Asunto(s)
Bencilaminas/química , Inhibidores Enzimáticos/química , Canales de Potasio Éter-A-Go-Go/metabolismo , Tiofenos/química , Triptasas/antagonistas & inhibidores , Bencilaminas/farmacología , Cristalografía por Rayos X , Estabilidad de Medicamentos , Canal de Potasio ERG1 , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica/efectos de los fármacos , Tiofenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...