Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Bioresour Technol ; 364: 128076, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36216286

RESUMEN

Agricultural waste biomass has shown great potential to deliver green energy produced by biochemical and thermochemical conversion processes to mitigate future energy crises. Biohydrogen has become more interested in carbon-free and high-energy dense fuels among different biofuels. However, it is challenging to develop models based on experience or theory for precise predictions due to the complexity of biohydrogen production systems and the limitations of human perception. Recent advancements in machine learning (ML) may open up new possibilities. For this reason, this critical study offers a thorough understanding of ML's use in biohydrogen production. The most recent developments in ML-assisted biohydrogen technologies, including biochemical and thermochemical processes, are examined in depth. This review paper also discusses the prediction of biohydrogen production from agricultural waste. Finally, the techno-economic and scientific obstacles to ML application in agriculture waste biomass-based biohydrogen production are summarized.

2.
Bioresour Technol ; 342: 126057, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34597808

RESUMEN

Biohydrogen (BioH2) is considered as one of the most environmentally friendly fuels and a strong candidate to meet the future demand for a sustainable source of energy. Presently, the production of BioH2 from photosynthetic organisms has raised a lot of hopes in the fuel industry. Moreover, microalgal-based BioH2 synthesis not only helps to combat current global warming by capturing greenhouse gases but also plays a key role in wastewater treatment. Hence, this manuscript provides a state-of-the-art review of the upstream and downstream BioH2 production processes. Different metabolic routes such as direct and indirect photolysis, dark fermentation, photofermentation, and microbial electrolysis are covered in detail. Upstream processes (e.g. growth techniques, growth media) also have a great impact on BioH2 productivity and economics, which is also explored. Technical and scientific obstacles of microalgae BioH2 systems are finally addressed, allowing the technology to become more innovative and commercial.


Asunto(s)
Microalgas , Biocombustibles , Fermentación , Hidrógeno/análisis , Fotólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...