Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; 24(13): e202300133, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013973

RESUMEN

In liquid crystalline systems, the presence of polar groups at lateral or terminal positions is fundamentally and technologically important. Bent-core nematics composed of polar molecules with short rigid cores usually exhibit highly disordered mesomorphism with some ordered clusters that favourably nucleate within. Herein, we have systematically designed and synthesized two new series of highly polar bent-core compounds comprised of two unsymmetrical wings, highly electronegative -CN and -NO2 groups at one end, and flexible alkyl chains at the other end. All the compounds showed a wide range of nematic phases composed of cybotactic clusters of smectic-type (Ncyb ). The birefringent microscopic textures of the nematic phase were accompanied by dark regions. Further, the cybotactic clustering in the nematic phase was characterized via temperature-dependent XRD studies and dielectric spectroscopy. Besides, the birefringence measurements demonstrated the ordering of the molecules in the cybotactic clusters upon lowering the temperature. DFT calculations illustrated the favourable antiparallel arrangement of these polar bent-core molecules as it minimizes the large net dipole moment of the system.

2.
Chemistry ; 29(3): e202202876, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36205928

RESUMEN

Three benzene-1,3,5-tricarboxamide (BTA) core-based molecular systems appended with phenylazo-3,5-dimethylisoxazole photoswitches at the peripheral position through variable-length alkoxy chains have been designed and synthesized. The supramolecular interactions of the mesogens provided discotic nematic liquid crystalline assembly as confirmed by polarized optical microscopy (POM) and X-ray diffraction (XRD) studies. Spectroscopic studies confirmed the reversible photoswitching and excellent thermal stability of the photoswitched states in solution phase and thin film. Also, atomic force microscopic (AFM) and POM investigations demonstrated the morphological changes in the self-assembly induced by the photoirradiation as monitored by the changes in the height profiles and optical appearance of the textures, respectively. Remarkably, the liquid crystalline discotic molecules showed reversible "on and off states" controlled by light at ambient temperature.

3.
Chem Rec ; 22(8): e202200056, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35594033

RESUMEN

With the advent of a new decade and the paradigm shift of every sphere of urban life to virtual platforms, it has become imperative for the global researcher community to channelize efforts into upgradation of the existing display-technology. In this context, discotic liquid crystals (DLCs) are a class of self-assembling organic materials that are recently being explored in fabricating the emissive layers of organic light emitting diodes (OLEDs). With their unique inherent structural and functional properties, they have the potential to challenge the currently prevailing OLED-emitters. Yet the applications of this promising class of materials in OLEDs have not been comprehensively reviewed in literature till now. In this account, we present an overview of the developments in the field of luminescent DLC-based emitters, supported by their associated photophysical phenomena and their performance parameters as emitters in fabricated OLED devices.

4.
Chemistry ; 28(19): e202104602, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35166400

RESUMEN

Two tripodal C3 -symmetric photoswitchable molecular systems T1 and T2 are reported that have extended conjugation at external and internal positions using an acryl group. The influence of the extended π-bonds in their absorption properties, thermal relaxation of the photoisomers and their propensities in forming supramolecular self-assemblies have been explored through spectroscopy, and microscopic studies. In particular, the investigations on the self-assembly have been carried out using scanning electron microscopy (SEM), transmission electron microscopy (TEM), polarized optical microscopy (POM), X-ray diffraction studies (XRD) and atomic force microscopy (AFM). Remarkably, the position of the acryl group influences the behaviour of the two target molecules in supramolecular assembly, and also in the formation of photoresponsive organic hydrogels or microcrystals.

5.
Chemphyschem ; 22(13): 1361-1370, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33956388

RESUMEN

A study on the photoswitching behavior of azobenzene-based polar hockey-stick-shaped liquid crystals (HSLCs) has been presented. Two new series of five phenyl rings based polar HSLCs have been designed and synthesized. Solution state photoisomerization of the synthesized materials was investigated thoroughly via UV-visible and 1 H NMR spectroscopic techniques, whereas solid-state photochromic behavior was elucidated via physical color change of the materials, solid-state UV-visible study, powder XRD, and FE-SEM techniques. The materials exhibited decent photochromic behavior for different potential applications. The thermal phase behavior of the superstructural assembly has been characterized via polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and temperature-dependent small and wide-angle X-ray scattering (SAXS/WAXS) studies. Depending upon the length of the terminal alkyl chain, nematic (N) and partially bilayer smectic A (SmAd ) phases were observed. DFT calculations revealed the favorable anti-parallel arrangement of the polar molecules that substantiate the formation of SmAd phase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...